【題目】如圖所示,已知ABC.

(1)用直尺和圓規(guī)作∠A的平分線和邊BC的垂直平分線;

(要求:不寫作法,但需要保留畫圖痕跡)

(2)設(1)中的和直線交于點P,過點PPEAB,垂足為點E,過點PPFACAC的延長線于點F.請你探究BECF之間的數(shù)量關系,并加以證明.

【答案】(1)見解析 (2)BE=CF.

【解析】

(1)以點A為圓心,以任意長為半徑畫弧,分別與AB、AC相交,再以這兩點為圓心,以大于它們長度的為半徑畫弧,兩弧相交于一點,過點A與交點作射線即為∠A的平分線;分別以點B、C為圓心,以大于BC長度為半徑畫弧,在BC的兩邊分別相交于一點,過這兩點作直線即為BC的垂直平分線;
(2)結(jié)論BE=CF.利用全等三角形的性質(zhì)即可證明.

(1)

(2)BE=CF.

連接PBPC

AP平分∠CAB,PEAB,PFAC

PE=PF.

l2垂直平分BC,

PC=PB.

HL證明PFCPEB

BE=CF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結(jié)論;
(2)在圖1的基礎上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店老板去批發(fā)市場購買某種圖書.第一次用1200元購書若干本,并按該書定價20元出售,很快售完.由于該書暢銷,第二次購書時,每本書批發(fā)價比第一次提高了25%,他用1800元所購該書數(shù)量比第一次多20本,又按定價售出全部圖書.
(1)求該書原來每本的批發(fā)價;
(2)該老板這兩次售書一共賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點P,BE=BC,PBCE交于點H,PGADBCF,交ABG,連接CP.下列結(jié)論:ACB=2APBSPACSPAB=ACAB;BP垂直平分CE;PCF=CPF.其中,正確的有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種對正整數(shù)n“F運算:①當n為奇數(shù)時,結(jié)果為3n+5;②當n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的正整數(shù));并且運算重復進行.例如,取n=26,第3“F運算的結(jié)果是11.則:若n=449,則第449“F運算的結(jié)果是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:

(其中a、b、m、n均為整數(shù)),則有.

.這樣小明就找到了一種把類似的式子化為平方式的方法。

請你仿照小明的方法探索并解決下列問題:(a,b,m,n均為正整數(shù))

(1),用含m、n的式子分別表示a、b,得:a=___,b=___;

(2)當a=7,n=1時,填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°,ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交ACBC的延長線于E,D.過PPFADAC的延長線于點H,交BC的延長線于點F,連接AFDH于點G.則下列結(jié)論:①∠APB=45°;PF=PA;BD﹣AH=AB;DG=AP+GH.其中正確的是( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.

(1)求點A,B的坐標;

(2)如圖,點Cx軸正半軸上一點,且OC=OA,點DOC的中點,連AC,AD,請?zhí)剿?/span>AD+CDAC之間的大小關系,并說明理由;

(3)如圖,過點AAE⊥y軸于E,F(xiàn)x軸負半軸上一動點不與(-3,0)重合 ),GEF延長線上,以EG為一邊作∠GEN=45°,過AAM⊥x軸,交EN于點M,連FM,當點Fx軸負半軸上移動時,式子的值是否發(fā)生變化?若變化,求出變化的范圍;若不變化,請求出其值并說明理由.

查看答案和解析>>

同步練習冊答案