“兩龍”高速公路是目前我省高速公路隧道和橋梁最多的路段.如圖,是一個(gè)單心圓曲隧道的截面,若路面AB寬為10米,凈高CD為7米,則此隧道單心圓的半徑OA是______.
∵OD⊥AB,
∴AD=DB=
1
2
AB=
1
2
×10=5m,
在Rt△OAD中,設(shè)半徑OA=R,OD=CD-R=7-R,
∴OA2=OD2+AD2,即R2=(7-R)2+52,解得R=
37
7
,
∴此隧道圓的半徑OA是
37
7
m.
故答案為:
37
7
m.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知P為正方形ABCD的對角線AC上一點(diǎn)(不與A、C重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F.
(1)試說明:BP=DP;
(2)如圖2,若正方形PECF繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中是否總有BP=DP?若是,請給予證明;若不是,請畫圖用反例加以說明;
(3)試選取正方形ABCD的兩個(gè)頂點(diǎn),分別與正方形PECF的兩個(gè)頂點(diǎn)連接,使得到的兩條線段在正方形PECF繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)的過程中長度始終相等,并證明你的結(jié)論;
(4)旋轉(zhuǎn)的過程中AP和DF的長度是否相等?若不等,直接寫出AP:DF=______;
(5)若正方形ABCD的邊長是4,正方形PECF的邊長是1.把正方形PECF繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)的過程中,△PBD的面積是否存在最大值、最小值?如果存在,試求出最大值、最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖1,在正方形ABCD中,O為正方形的中心,∠MON繞著O點(diǎn)自由的轉(zhuǎn)動,角的兩邊與正方形的邊BC、CD交于E、F.若∠MON=90°,正方形的面積等于S.求四邊形OECF的面積.(用S表示)
下面給出一種求解的思路,你可以按這一思路求解,也可以選擇另外的方法去求.
解:連接OB、OC.∵O為正方形的中心,∴∠BOC=
360
4
=90°,
∵∠MON=90°∴∠FOC+∠EOC=∠EOB+∠EOC=90°.∴∠FOC=∠EOB
(下面請你完成余下的解題過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),O是△ABC的中心,∠MON=120°,正三角形ABC的面積等于S.求四邊形OECF的面積.(用S表示)
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X”,正n邊形的面積等于S.請你作出猜想:當(dāng)∠MON=______°時(shí),四邊形OECF的面積=______(用S表示,并直接寫出答案,不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O內(nèi)有折線OABC,點(diǎn)B、C在圓上,點(diǎn)A在⊙O內(nèi),其中OA=4cm,BC=10cm,∠A=∠B=60°,則AB的長為( 。
A.5cmB.6cmC.7cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

高速公路的隧道和橋梁最多.如圖是一個(gè)隧道的橫截面,若它的形狀是以O(shè)為圓心的圓的一部分,路面AB=12米,凈高CD=9米,則此圓的半徑OA=(  )
A.
12
2
B.
13
2
C.
14
2
D.
15
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在⊙O中,弦AB=24,弦CD=10,圓心到AB的距離為5,則圓心到CD的距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,⊙O的弦AB、AC的夾角為50°,MN分別為弧AB和弧AC的中點(diǎn),OM、ON分別交AB、AC于點(diǎn)E、F,則∠MON的度數(shù)為( 。
A.110°B.120°C.130°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓內(nèi)兩條弦互相垂直,其中一條AB被分成3和4兩段,另一條CD被分成2和6兩段,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓弧形橋拱的跨度AB=16米,拱高CD=4米,則拱橋的半徑為______米.

查看答案和解析>>

同步練習(xí)冊答案