【題目】如圖,在中,,點的平分線上一點,連接.

1)求證:;

2)若,,求的度數(shù).

【答案】1)見解析;(2

【解析】

1)由OA平分∠BAC可知∠BAO=∠CAO,由SAS即可證明△BAO≌△CAO,從而得出結論.

2)由(1)可知∠OAC=∠OAB23°,由OAOC可知∠OAC=∠OCA23°,由三角形外角性質可知∠COB2OAC2OAB2BAC即可解答.

證明:(1平分,

,,

,

;

2)由(1)得∴∠BAO=∠CAOBACOBOC,

OAOC

OAOBOC,

∴∠OAC=∠OCA=∠BAO=∠OBA23°,

∵∠COB=∠OAC+∠OCA+∠BAO+∠OBA2BAC92°.

∴∠OCB=(180°92°)÷244°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)準備新建50個停車位,用以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位共需0.6萬元;新建3個地上停車位和2個地下停車位共需1.3萬元.

(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

(2)該小區(qū)的物業(yè)部門預計投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AB1AD2,動點M、N分別從頂點A、B同時出發(fā),且分別沿著ADBA運動,點N的速度是點M2倍,點N到達頂點A時,則兩點同時停止運動,連接BMCN交于點P,過點P分別作ABAD的垂線,垂足分別為EF,則線段EF的最小值為(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)y(x0)的圖象上,點C,D在反比例函數(shù)y(k0)的圖象上,ACBDy軸,已知點AB的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在ABC的外側分別以AB,AC為腰作了兩個等腰直角三角形ABDACE,分別取BDCE,BC的中點M,N,G,連接GM,GN.小明發(fā)現(xiàn)了:線段GMGN的數(shù)量關系是__________;位置關系是__________

(2)類比思考:

如圖②,小明在此基礎上進行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中ABAC,其它條件不變,小明發(fā)現(xiàn)的上述結論還成立嗎?請說明理由.

(3)深入研究:

如圖③,小明在(2)的基礎上,又作了進一步的探究.向ABC的內(nèi)側分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷GMN的形狀,并給與證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形中,對角線、交于點、上一點,連接,點在邊上,且于點,連接,已知.

1)若,,求的長;

2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動課上,小穎同學用兩塊完全一樣的透明等腰直角三角板ABCDEF進行探究活動.

操作:使點D落在線段AB的中點處并使DF過點C(如圖1),然后將其繞點D順時針旋轉,直至點E落在AC的延長線上時結束操作,在此過程中,線段DEAC或其延長線交于點K,線段BCDF相交于點G(如圖2,3)

探究1:在圖2中,求證:△ADK∽△BGD

探究2:在圖2中,求證:KD平分∠AKG

探究3

①在圖3中,KD仍平分∠AKG嗎?若平分,請加以證明;若不平分,請說明理由.

②在以上操作過程中,若設AC=BC=8,KG=x,△DKG的面積為y,請求出yx的函數(shù)關系式,并直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB=9,點C為線段AB上一點,AC=3,D為平面內(nèi)一動點,且滿足CD=3,連接BDBD繞點D逆時針旋轉90DE,連接BEAE,AE的最大值為 ________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查.調(diào)查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

同步練習冊答案