【題目】閱讀短文,解決問題

如果一個(gè)三角形和一個(gè)菱形滿足條件:三角形的一個(gè)角與菱形的一個(gè)角重合,且菱形的這個(gè)角的對(duì)角頂點(diǎn)在三角形的這個(gè)角的對(duì)邊上,則稱這個(gè)菱形為該三角形的“親密菱形”.如圖1,菱形AEFD為△ABC的“親密菱形”.

如圖2,△ABC中,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧,交AB、AC于點(diǎn)M、N,再分別以M、N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)P,作射線AP,BC于點(diǎn)F,過點(diǎn)FFD//AC,F(xiàn)E//AB.

(1)求證:四邊形AEFD是△ABC的“親密菱形”;

(2)當(dāng)AB=6,AC=12,∠BAC=45°時(shí),求菱形AEFD的面積.

【答案】(1)證明見解析;(2) 四邊形的面積為.

【解析】(1)根據(jù)尺規(guī)作圖可知AF平分∠BAC,再根據(jù)DF//AC,可得AD=DF,再由兩組對(duì)邊分別平行的四邊形是平行四邊形可得四邊形AEFD是平行四邊形,繼而可得平行四邊形AEFD是菱形,根據(jù)親密菱形的定義即可得證;

(2)設(shè)菱形的邊長(zhǎng)為a,即DF=AD=a,則BD=6-a,可證得BDFBAC,根據(jù)相似三角形的性質(zhì)可求得a=4,過DDGAC,垂足為G,在RtADG中, DG=2,繼而可求得面積.

(1)由尺規(guī)作圖可知AF平分∠BAC,

∴∠DAF=EAF,

DF//AC,∴∠DFA=EAF,∴∠DAF=DFA,AD=DF,

FD//AC,F(xiàn)E//AB,∴四邊形AEFD是平行四邊形,

∴平行四邊形AEFD是菱形,

∵∠BAC與∠DAE重合,點(diǎn)F點(diǎn)BC上,

∴菱形AEFDABC親密菱形”;

(2)設(shè)菱形的邊長(zhǎng)為a,即DF=AD=a,則BD=6-a,

DF//AC,∴△BDFBAC,

BD:BA=BF:AC,

即(6-a):6=a:12,

a=4,

DDGAC,垂足為G,

RtADG中,∠DAG=45°,DG=AD=2,

S菱形AEFD=AEDG=8,

即四邊形AEFD的面積為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知FGAB,CDAB,垂足分別為G,D,∠1=∠2,

求證:∠CED+ACB180°,

請(qǐng)你將小明的證明過程補(bǔ)充完整.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上物體后會(huì)伸長(zhǎng),若一彈簧長(zhǎng)度(cm)與所掛物體質(zhì)量(kg)之間的關(guān)系如下表:

物體的質(zhì)量(kg)

0

1

2

3

4

5

彈簧的長(zhǎng)度(cm)

12

125

13

135

14

145

則下列說法錯(cuò)誤的是(

A.彈簧長(zhǎng)度隨物體的質(zhì)量的變化而變化,物體的質(zhì)量是自變量,彈簧的長(zhǎng)度是因變量

B.如果物體的質(zhì)量為x kg,那么彈簧的長(zhǎng)度y cm可以表示為y=12+0.5x

C.在彈簧能承受的范圍內(nèi),當(dāng)物體的質(zhì)量為7kg時(shí),彈簧的長(zhǎng)度為16cm

D.在沒掛物體時(shí),彈簧的長(zhǎng)度為12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在一次用頻率估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一個(gè)結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結(jié)果的實(shí)驗(yàn)可能是(

實(shí)驗(yàn)次數(shù)

100

200

300

500

800

1200

頻率

0.430

0.360

0.320

0.328

0.330

0.329

A. 拋一枚質(zhì)地均勻的硬幣,出現(xiàn)正面的概率

B. 從一個(gè)裝有3個(gè)紅球和2個(gè)白球的不透明袋子里任取1球,取出紅球的概率

C. 擲一枚均勻的正方體骰子,出現(xiàn)的點(diǎn)數(shù)是3的倍數(shù)的概率

D. 從正方形、正五邊形、正六邊形中任意取一個(gè)圖形,是軸對(duì)稱圖形的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全市中學(xué)運(yùn)動(dòng)會(huì)800m比賽中,甲、乙兩名運(yùn)動(dòng)員同時(shí)起跑,剛跑出200m后,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,并取得了優(yōu)異的成績(jī).圖中分別表示甲、乙兩名運(yùn)動(dòng)員所跑的路程ym)與比賽時(shí)間xs)之間的關(guān)系,根據(jù)圖象解答下列問題:

1)甲再次投入比賽后,甲的速度為;

2)甲再次投入比賽后,在距離終點(diǎn)多遠(yuǎn)處追上乙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為的拋物線經(jīng)過點(diǎn),點(diǎn).

(1)求拋物線的解析式;

(2)如圖1,直線軸相交于點(diǎn)軸相交于點(diǎn),拋物線與軸相交于點(diǎn),在直線上有一點(diǎn),若,求的面積;

(3)如圖2,點(diǎn)是折線上一點(diǎn),過點(diǎn)軸,過點(diǎn)軸,直線與直線相交于點(diǎn),連接,將沿翻折得到,若點(diǎn)落在軸上,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)與原點(diǎn)的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡(jiǎn):|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是線段上任一點(diǎn),兩點(diǎn)分別從同時(shí)向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)的時(shí)間為.

1)若,

①運(yùn)動(dòng)后,求的長(zhǎng);

②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說明;

2)如果時(shí),,試探索的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案