已知:∠MAN=60°,點(diǎn)B在射線(xiàn)AM上,AB=4(如圖).P為直線(xiàn)AN上一動(dòng)點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),O是△BPQ的外心.
(1)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)時(shí),求證:點(diǎn)O在∠MAN的平分線(xiàn)上;
(2)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A不重合)時(shí),AO與BP交于點(diǎn)C,設(shè)AP=x,AC•AO=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)若點(diǎn)D在射線(xiàn)AN上,AD=2,圓I為△ABD的內(nèi)切圓.當(dāng)△BPQ的邊BP或BQ與圓I相切時(shí),請(qǐng)直接寫(xiě)出點(diǎn)A與點(diǎn)O的距離.
精英家教網(wǎng)
分析:(1)證O在∠MAN的平分線(xiàn)上,可證O到角兩邊的距離相等,分兩種情況:
①OB不與AM垂直,過(guò)O作OT⊥AN,OH⊥AM,可通過(guò)構(gòu)建全等三角形來(lái)求解.
連接OB,OP,則OB=OP,只需證明△OHB與△OTP全等即可.
這兩個(gè)三角形中,已知的條件有OB=OP,一組直角.只需再證得一組角對(duì)應(yīng)相等即可,∠HOT和∠BOP都等于120°,因此∠BOH=∠TOP,則兩三角形全等,OT=OH.由此得證.
②當(dāng)OB⊥AM時(shí),由于OB=OP,只需證明OP⊥AN即可.
由于∠BOP=120°,而∠ABO=90°,∠MAN=60°,根據(jù)四邊形的內(nèi)角和為360°,即可求得OP⊥AN,由此可得證.
(2)本題要通過(guò)相似三角形ACP和ABO來(lái)求解.
這兩個(gè)三角形中,已知了∠BAO=∠CAP(在1題中已經(jīng)證得).
只需再找出一組對(duì)應(yīng)角相等即可,在△ACP和△OBC中,∠CAP=∠OBC=30°,∠ACP=∠BCO,因此∠APC=∠AOB,由此證得兩三角形相似,可得出關(guān)于AB,AC,AO,AP的比例關(guān)系式,據(jù)此可求出y,x的函數(shù)關(guān)系式.
(3)本題分三種情況:
①圓I在△BPQ外,且與BP邊相切,此時(shí)D、P重合,AD=AP=2,AB=4,∠MAN=60°,因此△ABP為直角三角形,不難得出△ABO也是直角三角形,因此可得出△ABO≌△APB,AO=BP=2
3

②圓I在△BPQ內(nèi),與BP,PQ邊相切時(shí),此時(shí)P與A重合,可在直角三角形ODA中,根據(jù)AD=2,∠DAO=30°,求得AO=
4
3
3
;
③圓I在△BPQ內(nèi),與BQ邊相切時(shí),A,O重合,因此AO=0.
解答:精英家教網(wǎng)(1)證明:如圖1,連接OB,OP.
∵O是等邊三角形BPQ的外心,
∴圓心角∠BOP=
360°
3
=120°.
當(dāng)∠MAN=60°,不垂直于AM時(shí),作OT⊥AN,則OB=OP.
由∠HOT+∠A+∠AHO+∠ATO=360°,且∠A=60°,∠AHO=∠ATO=90°,
∴∠HOT=120度.
∴∠BOH=∠POT.
∴Rt△BOH≌Rt△POT.
∴OH=OT.
∴點(diǎn)O在∠MAN的平分線(xiàn)上.
當(dāng)OB⊥AM時(shí),∠APO=360°-∠A-∠BOP-∠OBA=90°.
即OP⊥AN,
∴點(diǎn)O在圓I的平分線(xiàn)上.
綜上所述,當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)時(shí),點(diǎn)O在∠MAN的平分線(xiàn)上.

(2)解:如圖2,
∵AO平分∠MAN,且∠MAN=60°,
∴∠BAO=∠PAO=30°.
由(1)知,OB=OP,∠BOP=120°,
∴∠CBO=30°,
∴∠CBO=∠PAC.
∵∠BCO=∠PCA,
∴∠AOB=∠APC.
∴△ABO∽△ACP.
AB
AC
=
AO
AP

∴AC•AO=AB•AP.
∴y=4x.
定義域?yàn)椋簒>0.

(3)解:①如圖3,當(dāng)BP與圓I相切時(shí),AO=2
3
;
②如圖4,當(dāng)BP與圓I相切時(shí),AO=
4
3
3
;
③如圖5,當(dāng)BQ與圓I相切時(shí),AO=0.
點(diǎn)評(píng):本題考查了相似三角形、全等三角形、角平分線(xiàn)定理、等邊三角形的性質(zhì)、直線(xiàn)與圓的位置關(guān)系等知識(shí)點(diǎn).本題考點(diǎn)較多,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請(qǐng)?zhí)骄浚?br />精英家教網(wǎng)
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長(zhǎng);
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點(diǎn),則AB1+AC1的長(zhǎng)是否不變?請(qǐng)說(shuō)明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點(diǎn),交AN于C2點(diǎn),則AC2的長(zhǎng)是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請(qǐng)?zhí)骄浚?img src="http://thumb.zyjl.cn/pic5/upload/201311/52868d96ee60d.png" style="vertical-align:middle" />
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長(zhǎng);
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點(diǎn),則AB1+AC1的長(zhǎng)是否不變?請(qǐng)說(shuō)明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點(diǎn),交AN于C2點(diǎn),則AC2的長(zhǎng)是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:上海中考真題 題型:解答題

已知:∠MAN=60°,點(diǎn)B在射線(xiàn)AM上,AB=4(如圖),P為直線(xiàn)AN上一動(dòng)點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),O是△BPQ的外心。
(1)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)時(shí),求證:點(diǎn)O在∠MAN的平分線(xiàn)上;
(2)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A不重合)時(shí),AO與BP交于點(diǎn)C,設(shè)AP=x,AC·AO=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)若點(diǎn)D在射線(xiàn)AN上,AD=2,圓I為△ABD的內(nèi)切圓.當(dāng)△BPQ的邊BP或BQ與圓I相切時(shí),請(qǐng)直接寫(xiě)出點(diǎn)A與點(diǎn)O的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第35章《圓(二)》中考題集(04):35.2 直線(xiàn)與圓的位置關(guān)系(解析版) 題型:解答題

已知:∠MAN=60°,點(diǎn)B在射線(xiàn)AM上,AB=4(如圖).P為直線(xiàn)AN上一動(dòng)點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),O是△BPQ的外心.
(1)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)時(shí),求證:點(diǎn)O在∠MAN的平分線(xiàn)上;
(2)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A不重合)時(shí),AO與BP交于點(diǎn)C,設(shè)AP=x,AC•AO=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)若點(diǎn)D在射線(xiàn)AN上,AD=2,圓I為△ABD的內(nèi)切圓.當(dāng)△BPQ的邊BP或BQ與圓I相切時(shí),請(qǐng)直接寫(xiě)出點(diǎn)A與點(diǎn)O的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案