【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC的位置如圖所示.

1)分別寫出ABC各個(gè)頂點(diǎn)的坐標(biāo);

2)判斷ABC的形狀;

3)請(qǐng)?jiān)趫D中畫出ABC關(guān)于y軸對(duì)稱的圖形A'B'C'

【答案】1A(-1,5),B(-2,0),C(-4,3);2)△ABC是等腰直角三角形;(3)答案見解析.

【解析】

(1)看圖分別寫出三角形頂點(diǎn)坐標(biāo)即可;(2)利用勾股定理分別求出三角形的三條邊長(zhǎng),然后利用等腰三角形的判定和勾股定理逆定理進(jìn)行判斷;(3)作出三角形關(guān)于y軸對(duì)稱的對(duì)應(yīng)頂點(diǎn),然后連線即可.

解:(1)由題意可知:A(-1,5),B(-2,0),C(-4,3);

(2)根據(jù)勾股定理可得:

∴BC=AC,且

∴△ABC是等腰直角三角形;

(3)A'B'C'如圖所示

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,BAE=105°,AE的垂直平分線MNBE于點(diǎn)C,且ABCE,則B的度數(shù)是(  )

A. 45°B. 60°C. 50°D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的邊OC=2,將過點(diǎn)B的直線y=x﹣3x軸交于點(diǎn)E.

(1)求點(diǎn)B的坐標(biāo);

(2)連結(jié)CE,求線段CE的長(zhǎng);

(3)若點(diǎn)P在線段CB上且OP=,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)的圖象的一部分,圖象過點(diǎn),對(duì)稱軸是直線,給出五個(gè)結(jié)論:;②;③;④;⑤.其中正確的是________(把你認(rèn)為正確的序號(hào)都填上,答案格式如:”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABBC,AB = BC,EBC上一點(diǎn),連接AE,過點(diǎn)CCFAE,交AE的延長(zhǎng)線于點(diǎn)F,連結(jié)BF,過點(diǎn)BBGBFAEG

1)求證:△ABG ≌ △CBF;

2)若EBC中點(diǎn),求證:CF + EF = EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。

A. ①和② B. ②和③ C. ①和③ D. ②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.

(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);

(2)若OEF的面積為9,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)     (2)

(3)       。4)

(5)3(2x﹣1)2﹣27=0 (6)9(x+1)2=4(x﹣2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

同步練習(xí)冊(cè)答案