【題目】如圖,某市文化節(jié)期間,在景觀湖中央搭建了一個舞臺C,在岸邊搭建了三個看臺A,B,D,其中A,C,D三點在同一條直線上,看臺A,B到舞臺C的距離相等,測得∠A=30°,∠D=45°,AB=60 m,小明、小麗分別在B,D看臺觀看演出,請分別求出小明、小麗與舞臺C的距離.(結(jié)果保留根號)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們環(huán)保意識的增強(qiáng),越來越多的人選擇低碳出行,各種品牌的山地自行車相繼投放市場.順風(fēng)車行五月份型車的銷售總利潤為元,型車的銷售總利潤為元.且型車的銷售數(shù)量是型車的倍,已知銷售型車比型車每輛可多獲利元.
(1)求每輛型車和型車的銷售利潤;
(2)若該車行計劃一次購進(jìn)兩種型號的自行車共臺且全部售出,其中型車的進(jìn)貨數(shù)量不超過型車的倍,則該車行購進(jìn)型車、型車各多少輛,才能使銷售總利潤最大?最大銷售總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計,每輛車的月租金為4000元時,可全部租出.每輛車的月租金每增加100元,未租出的車將增加1輛.租出的車每輛每月的維護(hù)費為500元,未租出的車每輛每月只需維護(hù)費100元.
(1)當(dāng)每輛車的月租金為4600元時,能租出多少輛?并計算此時租賃公司的月收益(租金收入扣除維護(hù)費)是多少萬元?
(2)規(guī)定每輛車月租金不能超過7200元,當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益(租金收入扣除維護(hù)費)可達(dá)40.4萬元?
(3)當(dāng)每輛車的月租金定為_________元時,租賃公司的月收益最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海城市A接到臺風(fēng)警報,在該城市正南方向260 km的B處有一臺風(fēng)中心,沿BC方向以15 km/h的速度向C移動,已知城市A到BC的距離AD=100 km,那么臺風(fēng)中心經(jīng)過多長時間從B點移動到D點?如果在距臺風(fēng)中心30 km的圓形區(qū)域內(nèi)都將受到臺風(fēng)的影響,正在D點休息的游人在接到臺風(fēng)警報后的幾小時內(nèi)撤離才可以免受臺風(fēng)的影響?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條道路上通行車輛限速為60千米/時,在離道路50米處建有一個監(jiān)測點P,道路AB段為檢測區(qū)(如圖).在△ABP中,已知∠PAB=32°,∠PBA=45°,那么車輛通過AB段的時間在多少秒以內(nèi)時,可認(rèn)定為超速?(精確到0.1秒.參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某涌泉蜜桔長方體包裝盒的展開圖.具體數(shù)據(jù)如圖所示,且長方體盒子的長是寬的2倍.
(1)展開圖的6個面分別標(biāo)有如圖所示的序號,若將展開圖重新圍成一個包裝盒,則相對的面分別是 與 , 與 , 與 ;
(2)若設(shè)長方體的寬為xcm,則長方體的長為 cm,高為 cm;(用含x的式子表示)
(3)求這種長方體包裝盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)問題中,我們常用幾何方法解決代數(shù)問題,借助數(shù)形結(jié)合的方法使復(fù)雜問題簡單化.
材料一:我們知道|a|的幾何意義是:數(shù)軸上表示數(shù)a的點到原點的距離;|a﹣b|的幾何意義是:數(shù)軸上表示數(shù)a,b的兩點之間的距離;|a+b|的幾何意義是:數(shù)軸上表示數(shù)a,﹣b的兩點之間的距離;根據(jù)絕對值的幾何意義,我們可以求出以下方程的解.
(1)|x﹣3|=4
解:由絕對值的幾何意義知:
在數(shù)軸上x表示的點到3的距離等于4
∴x1=3+4=7,x2=3﹣4=﹣1
(2)|x+2|=5
解:∵|x+2|=|x﹣(﹣2)|,∴其絕對值的幾何意義為:在數(shù)軸上x表示的點到﹣2的距離等于5.∴x1=﹣2+5=3,x2=﹣2﹣5=﹣7
材料二:如何求|x﹣1|+|x+2|的最小值.
由|x﹣1|+|x+2|的幾何意義是數(shù)軸上表示數(shù)x的點到表示數(shù)1和﹣2兩點的距離的和,要使和最小,則表示數(shù)x的這點必在﹣2和1之間(包括這兩個端點)取值.
∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把數(shù)軸上表示x的點記為點P,由絕對值的幾何意義知:當(dāng)﹣2≤x≤1時,|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,則點P必在﹣2的左邊或1的右邊,且到表示數(shù)﹣2或1的點的距離均為0.5個單位.
故方程|x﹣1|+|x+2|=4的解為:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.
閱讀以上材料,解決以下問題:
(1)填空:|x﹣3|+|x+2|的最小值為 ;
(2)已知有理數(shù)x滿足:|x+3|+|x﹣10|=15,有理數(shù)y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.
(3)試找到符合條件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此時的最小值及x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com