【題目】ABC中,其兩個(gè)內(nèi)角如下,則能判定ABC為等腰三角形的是(

A.A=40°,∠B=50°B.A=40°,∠B=60°

C.A=20°,∠B=80°D.A=40°,∠B=80°

【答案】C

【解析】

根據(jù)等腰三角形性質(zhì),利用三角形內(nèi)角和定理對(duì)4個(gè)選項(xiàng)逐一進(jìn)行分析即可得到答案.

A選項(xiàng):當(dāng)頂角為∠A=40°時(shí),∠B=C =≠50°,

當(dāng)頂角為∠B=50°時(shí),∠A=C=≠40°

所以A選項(xiàng)錯(cuò)誤.

B選項(xiàng):當(dāng)頂角為∠B=60°時(shí),∠A=C=≠40°,

當(dāng)頂角為∠A=40°時(shí),∠B=C =≠60°,

所以B選項(xiàng)錯(cuò)誤.

C選項(xiàng):當(dāng)頂角為∠A=20°時(shí),∠B=C =,所以C選項(xiàng)正確.

D選項(xiàng):當(dāng)頂角為∠A=40°時(shí),∠B=C =≠80°,

當(dāng)頂角為∠B=80°時(shí),∠A=C=≠40°

所以D選項(xiàng)錯(cuò)誤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD為⊙O的直徑,弦AB交CD于點(diǎn)E,連接BD、OB.
(1)求證:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數(shù)y= 圖象上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x軸正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )

A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,要判定AB∥CD,需要哪些條件?根據(jù)是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)某工廠計(jì)劃在規(guī)定時(shí)間內(nèi)生產(chǎn)24000個(gè)零件,若每天比原計(jì)劃多生產(chǎn)30個(gè)零件,則在規(guī)定時(shí)間內(nèi)可以多生產(chǎn)300個(gè)零件.

1)求原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計(jì)劃正常生產(chǎn)的同時(shí),引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個(gè)數(shù)比20個(gè)工人原計(jì)劃每天生產(chǎn)的零件總數(shù)還多20%,按此測(cè)算,恰好提前兩天完成24000個(gè)零件的生產(chǎn)任務(wù),求原計(jì)劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CDDE所截,則∠1 是同位角,∠1 是內(nèi)錯(cuò)角,∠1 是同旁內(nèi)角;

(2)(1)中,如果∠5=1,那么∠1=3的推理過(guò)程如下,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)注明理由:

因?yàn)椤?/span>5=1( ),

5=3( )

所以∠1=3( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩直線ABCD相交于點(diǎn)O,OE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù);

(2)OFOE,COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過(guò)點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說(shuō)法正確的是( 。

A. 若AD⊥BC,則四邊形AEDF是矩形

B. 若AD垂直平分BC,則四邊形AEDF是矩形

C. 若BD=CD,則四邊形AEDF是菱形

D. 若AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)N(0,6),點(diǎn)Mx軸負(fù)半軸上,ON=3OMA為線段MN上一點(diǎn),ABx垂足為點(diǎn)B,ACy垂足為點(diǎn)C

(1)直接寫出點(diǎn)M的坐標(biāo)為   ;

(2)求直線MN的函數(shù)解析式;

(3)若點(diǎn)A的橫坐標(biāo)為﹣1,將直線MN平移過(guò)點(diǎn)C,求平移后的直線解析式

查看答案和解析>>

同步練習(xí)冊(cè)答案