(2013•門頭溝區(qū)一模)已知關于x的一元二次方程
1
2
x2+(m-2 )x+2m-6=0

(1)求證:無論m取任何實數(shù),方程都有兩個實數(shù)根;
(2)當m<3時,關于x的二次函數(shù)y=
1
2
x2+(m-2 )x+2m-6
的圖象與x軸交于A、B 兩點(點A在點B的左側),與y軸交于點C,且2AB=3OC,求m的值;
(3)在(2)的條件下,過點C作直線l∥x軸,將二次函數(shù)圖象在y軸左側的部分沿直線l翻折,二次函數(shù)圖象的其余部分保持不變,得到一個新的圖象,記為G.請你結合圖象回答:當直線y=
1
3
x+b
與圖象G只有一個公共點時,b的取值范圍.
分析:(1)運用根的判別式就可以求出△的值就可以得出結論;
(2)先當x=0或y=0是分別表示出拋物線與x軸和y軸的交點坐標,表示出AB、OC的值,由2AB=3OC建立方程即可求出m的值;
(3)把(2)m的值代入拋物線的解析式就可以求出拋物線的解析式和C點的坐標,當直線經(jīng)過點C時就可以求出b的值,由直線與拋物線只有一個公共點建立方程,根據(jù)△=0就可以求出b的值,再根據(jù)圖象就可以得出結論.
解答:解:(1)根據(jù)題意,得
△=(m-2)2-4×
1
2
×(2m-6)
=(m-4)2
∵無論m為任何數(shù)時,都有(m-4)2≥0,即△≥0.
∴無論m取任何實數(shù),方程都有兩個實數(shù)根;
(2)由題意,得
當y=0時,則
1
2
x2+(m-2 )x+2m-6=0
,
解得:x1=6-2m,x2=-2,
∵m<3,點A在點B的左側,
∴A(-2,0),B(-2m+6,0),
∴OA=2,OB=-2m+6.
當x=0時,y=2m-6,
∴C(0,2m-6),
∴OC=-(2m-6)=-2m+6.
∵2AB=3OC,
∴2(2-2m+6)=3(-2m+6),
解得:m=1;
(3)如圖,當m=1時,拋物線的解析式為y=
1
2
x2-x-4,
點C的坐標為(0,-4).
當直線y=
1
3
x+b經(jīng)過點C時,可得b=-4,
當直線y=
1
3
x+b(b<-4)與函數(shù)y=
1
2
x2-x-4(x>0)的圖象只有一個公共點時,得
1
3
x+b═
1
2
x2-x-4.
整理得:3x2-8x-6b-24=0,
∴△=(-8)2-4×3×(-6b-24)=0,
解得:b=-
44
9

結合圖象可知,符合題意的b的取值范圍為b>-4或b<-
44
9
點評:本題是一道一次函數(shù)與二次函數(shù)的綜合試題,考查了一元二次方程根的判別式的運用,二次函數(shù)與坐標軸的交點坐標的運用,軸對稱的性質的運用,解答時根據(jù)函數(shù)之間的關系建立方程靈活運用根的判別式是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)PM2.5是大氣中粒徑小于等于2.5微米的顆粒物,稱為細顆粒物,是表征環(huán)境空氣質量的主要污染物指標.2.5微米等于0.0000025米,把0.0000025用科學記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)已知圓錐側面展開圖的扇形半徑為2cm,面積是
4
3
πcm2
,則扇形的弧長和圓心角的度數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個動點,過點P作EF∥BD,與平行四邊形的兩條邊分別交于點E、F.設CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)某中學初三年級的學生開展測量物體高度的實踐活動,他們要測量一幢建筑物AB的高度.如圖,他們先在點C處測得建筑物AB的頂點A的仰角為30°,然后向建筑物AB前進20m到達點D處,又測得點 A的仰角為60°,則建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平面直角坐標系xOy中,已知矩形ABCD的兩個頂點B、C的坐標分別是B(1,0)、C(3,0).直線AC與y軸交于點G(0,6).動點P從點A出發(fā),沿線段AB向點B運動.同時動點 Q從點C出發(fā),沿線段CD向點D運動.點P、Q的運動速度均為每秒1個單位,運動時間為t秒.過點P作PE⊥AB交AC于點E.
(1)求直線AC的解析式;
(2)當t為何值時,△CQE的面積最大?最大值為多少?
(3)在動點P、Q運動的過程中,當t為何值時,在矩形ABCD內(包括邊界)存在點H,使得以C、Q、E、H為頂點的四邊形是菱形?

查看答案和解析>>

同步練習冊答案