【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0,x>0)的圖象在第一象限內(nèi)交于點A,B,且該一次函數(shù)的圖象與y軸正半軸交于點C,過A,B分別作y軸的垂線,垂足分別為D,E.已知A(1,4),=.
(1)求m的值和一次函數(shù)的解析式;
(2)若點M為反比例函數(shù)圖象在A,B之間的動點,作射線OM交直線AB于點N,當MN長度最大時,直接寫出點M的坐標.
【答案】(1)4,y=﹣x+5;(2)(2,2)
【解析】
(1)先把A點坐標代入y=中求出m得到反比例函數(shù)解析式為y=;再證明△CDA∽△CEB,利用相似比求出BE=4,則利用反比例函數(shù)解析式確定B點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)利用點A與點B關(guān)于直線y=x對稱,反比例函數(shù)y=﹣關(guān)于y=x對稱可判斷當OM的解析式為y=x時,MN的長度最大,然后解方程組得此時M點的坐標.
(1)把A(1,4)代入y=得m=1×4=4,
∴反比例函數(shù)解析式為y=;
∵BD⊥y軸,AD⊥y軸,
∴AD∥BE,
∴△CDA∽△CEB,
∴=,即=,
∴BE=4,
當x=4時,y===1,
∴B(4,1),
把A(1,4),B(4,1)代入y=kx+b得,解得,
∴一次函數(shù)解析式為y=﹣x+5;
(2)∵點A與點B關(guān)于直線y=x對稱,反比例函數(shù)y=﹣關(guān)于y=x對稱,
∴當OM的解析式為y=x時,MN的長度最大,
解方程組得或,
∴此時M點的坐標為(2,2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在完善基礎(chǔ)設(shè)施、改善市容市貌、提升城市品質(zhì)過程中,2019年我市開展人行道改造工程,需要花崗巖地板磚鋪設(shè)人行道.現(xiàn)租用甲、乙兩種貨車運載地板磚,已知一輛甲車每次運載的重量比一輛乙車多2噸,且甲車運載16噸地板磚和乙車運載12噸地板磚所用的車輛數(shù)相同.
(1)甲、乙兩種貨車每次運載地板磚各多少噸?
(2)現(xiàn)租用甲車a輛、乙車b輛,剛好運載地板磚100噸,且a≤3b,共有多少種租車方案?
(3)在(2)中已知一輛甲車每次的運費是380元,一輛乙車每次的運費是300元,如何租用甲、乙兩種車可使得總運費最低?求出最低總運費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=mx2+(1﹣2m)x+1﹣3m.
(1)當m=2時,求二次函數(shù)圖象的頂點坐標;
(2)已知拋物線與x軸交于不同的點A、B.
①求m的取值范圍;
②若3≤m≤4時,求線段AB的最大值及此時二次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,M是CD邊上一動點(不與D點重合),點D與點E關(guān)于AM所在的直線對稱,連接AE,ME,延長CB到點F,使得BF=DM,連接EF,AF.
(1)依題意補全圖1;
(2)若DM=1,求線段EF的長;
(3)當點M在CD邊上運動時,能使△AEF為等腰三角形,直接寫出此時tan∠DAM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,該拋物線是由y=x2平移后得到,它的頂點坐標為(﹣,﹣),并與坐標軸分別交于A,B,C三點.
(1)求A,B的坐標.
(2)如圖2,連接BC,AC,在第三象限的拋物線上有一點P,使∠PCA=∠BCO,求點P的坐標.
(3)如圖3,直線y=ax+b(b<0)與該拋物線分別交于P,G兩點,連接BP,BG分別交y軸于點D,E.若ODOE=3,請?zhí)剿?/span>a與b的數(shù)量關(guān)系.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,EB是的直徑,且,在BE的延長線上取點P,使,A是EP上一點,過A作的切線,切點為D,過D作于F,過B作AD的垂線BH,交AD的延長線于當點A在EP上運動,不與E重合時:
是否總有,試證明你的結(jié)論;
設(shè),,求y和x的函數(shù)關(guān)系,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種洗衣機在洗滌衣服時,經(jīng)歷了進水、清洗、排水、脫水四個連續(xù)的過程,其中進水、清洗、排水時洗衣機中的水量y(升)與時間x(分鐘)之間的關(guān)系如圖所示.已知:洗衣機的排水速度為每分鐘20升.
(1)求排水時y與x之間的函數(shù)解析式;
(2)洗衣機中的水量到達某一水位后,過13.7分鐘又到達該水位,求該水位為多少升.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為,則k的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com