(2012•眉山)如圖,在與河對岸平行的南岸邊有A、B、D三點,A、B、D三點在同一直線上,在A點處測得河對岸C點在北偏東60°方向;從A點沿河邊前進200米到達B點,這時測得C點在北偏東30°方向,求河寬CD.
分析:首先由題意可得:∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,AB=200米,CD⊥AB,則可證得△ABC是等腰三角形,即BC=AB,然后在Rt△CBD中,由CD=BC•sin60°,即可求得答案.
解答:解:根據(jù)題意得:∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,AB=200米,CD⊥AB,
則∠ACB=∠CBD-∠CAB=60°-30°=30°,
則BC=AB=200米,
在Rt△CBD中,CD=BC•sin60°=200×
3
2
=100
3
(米).
答:河寬CD為100
3
米.
點評:此題考查了方向角問題.此題難度適中,注意能借助于解直角三角形的知識求解是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•眉山)如圖,在△ABC中,∠ACB=90°,∠A=20°,若將△ABC沿CD折疊,使B點落在AC邊上的E處,則∠ADE的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•眉山)已知:如圖,在直角坐標系中,有菱形OABC,A點的坐標為(10,0),對角線OB、AC相交于D點,雙曲線y=
k
x
(x>0)經(jīng)過D點,交BC的延長線于E點,且OB•AC=160,有下列四個結(jié)論:
①雙曲線的解析式為y=
20
x
(x>0);
②E點的坐標是(4,8);
③sin∠COA=
4
5

④AC+OB=12
5
,其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•眉山)如圖,平行四邊形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延長線于F點,則CF=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•眉山)如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標分別為A(-3,0),B(-1,-2),C(-2,2).
(1)請在圖中畫出△ABC繞B點順時針旋轉(zhuǎn)180°后的圖形;
(2)請直接寫出以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

同步練習冊答案