【題目】閱讀材料:求1+2+22+23+24+…+22019的值.
解:設(shè)S=1+2+22+23+24+…+22018+22019,①將等式兩邊同時乘2,得
2S=2+22+23+24+25+…+22019+22020,②
將②式減去①式,得2S-S=22020-1,
即S=22020-1,
則1+2+22+23+24+…+22019=22020-1.
請你仿照此法計算:
(1)1+2+22+23+24+…+210;
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).
【答案】(1) 211-1 ;(2).
【解析】
(1)設(shè)S=1+2+22+23+24+…+210,兩邊乘以2后得到關(guān)系式,與已知等式相減,變形即可求出所求式子的值;
(2)同理即可得到所求式子的值.
解:(1)設(shè)S=1+2+22+23+24+…+29+210,①
將等式兩邊同時乘2,得2S=2+22+23+24+…+210+211,②
將②式減去①式,得2S-S=211-1,即S=211-1,
則1+2+22+23+24+…+210=211-1.
(2)設(shè)S=1+3+32+33+34+…+3n-1+3n,①
將等式兩邊同時乘3,得3S=3+32+33+34+…+3n+3n+1,②
將②式減去①式,得3S-S=3n+1-1,即S=,
則1+3+32+33+34+…+3n=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點F,AE⊥BF于點O,交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店準備購進甲、乙兩種圖書共100本,購書款不高于2224元,預(yù)這100本圖書全部售完的利潤不低于1100元,兩種圖書的進價、售價如表所示:
甲種圖書 | 乙種圖書 | |
進價(元/本) | 16 | 28 |
售價(元/本) | 26 | 40 |
請回答下列問題:
(1)書店有多少種進書方案?
(2)在這批圖書全部售出的條件下,(1)中的哪種方案利潤最大?最大利潤是多少?(請你用所學(xué)的函數(shù)知識來解決)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在55的方格(每一格邊長為1)上沿著網(wǎng)格線運動,從A處出發(fā)去看望B、C、D處的甲蟲,規(guī)定:向上向右為正,向下向左為負.例如:從A到B記為:(+1,+3);從C到D 記為:(+1,-2),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)填空:記為( , ), 記為( , );
(2)若甲蟲的行走路線為:,請你計算甲蟲走過的路程.
(3)若這只甲蟲去Q的行走路線依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請依次在圖2標出點M、N、P、Q的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,
(1)寫出數(shù)軸上點B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對值,實際上也可理解為5與3兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動點P從O點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.求當(dāng)t為多少秒時?A,P兩點之間的距離為2;
(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.問當(dāng)t為多少秒時?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方形運動場被分隔成A,B,A,B,C共5個區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.
(1)列式表示每個B區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個長方形運動場的周長,并將式子化簡;
(3)如果a=40,c=10,求整個長方形運動場的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數(shù)與方差s2如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)(cm) | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應(yīng)該選擇( 。
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數(shù)m進行分組統(tǒng)計,結(jié)果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形圖來描述,求分數(shù)在8≤m<9內(nèi)所對應(yīng)的扇形圖的圓心角大;
(3)將在第一組內(nèi)的兩名選手記為:A1、A2,在第四組內(nèi)的兩名選手記為:B1、B2,從第一組和第四組中隨機選取2名選手進行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機抽取10臺進行測試,兩種電子鐘走時誤差的數(shù)據(jù)如下表(單位:秒):
編號 類型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲種電子鐘 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙種電子鐘 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 計算甲、乙兩種電子鐘走時誤差的平均數(shù);
(2) 計算甲、乙兩種電子鐘走時誤差的方差;
(3) 根據(jù)經(jīng)驗,走時穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com