【題目】某旅游商店8月份營業(yè)額為15萬元,9月份下降了20%.受“十一”黃金周以及經(jīng)濟利好因素的影響,10月份、11月份營業(yè)額均比上一個月有所增長,10月份增長率是11月份增長率的1.5倍,已知該旅游商店11月份營業(yè)額為24萬元.

(1)問:9月份的營業(yè)額是多少萬元?

(2)求10月份營業(yè)額的增長率.

【答案】(1)9月份的營業(yè)額是12萬元;(2)10月份的增長率為50%.

【解析】

試題(1)9月份的營業(yè)額=8月份的營業(yè)額;(2)設(shè)11月份的增長率為,找出9月份的營業(yè)額與11月份營業(yè)額之間的關(guān)系即可.

試題解析:9月份的營業(yè)額=(萬元);

設(shè)11月份的增長率為,則10月份的增長率為 ,

依題意,得:

解之,得:(不合題意,舍去)

10月份的增長率為.

答:10月份的增長率為50%.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點PPDAC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設(shè)點P的運動時間為t秒.

(1)用含t的代數(shù)式表示線段DC的長;

(2)當點Q與點C重合時,求t的值;

(3)設(shè)△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式;

(4)當線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將△ABO繞點O順時針旋轉(zhuǎn),若點A的對應(yīng)點A′的坐標為(2,0),

(1)則點B的對應(yīng)點B′的坐標為_____;

(2)畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線y=﹣x+2x軸交于點B,與y軸交于點C,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過B,C兩點,且與x軸的負半軸交于點A.

(1)求二次函數(shù)的表達式;

(2)如圖1,點D是拋物線第四象限上的一動點,連接DC,DB,當SDCB=SABC時,求點D坐標;

(3)如圖2,在(2)的條件下,點QCA的延長線上,連接DQ,AD,過點QQPy軸,交拋物線于P,若∠AQD=ACO+ADC,請求出PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B分別在x軸、y軸上(OA>OB),以AB為直徑的圓經(jīng)過原點O,C是的中點,連結(jié)AC,BC.下列結(jié)論:①AC=BC;②若OA=4,OB=2,則△ABC的面積等于5;③若OA﹣OB=4,則點C的坐標是(2,﹣2).其中正確的結(jié)論有(

A. 3個 B. 2個 C. 1個 D. 0個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD的面積為S,點P、Q時是ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學對條件進行分析后,甲得到結(jié)論①:“E是BC中點” .乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b20;4a+c2b3b+2c0;mam+b+bam≠﹣1),其中正確結(jié)論的是_________(只填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Ⅰ)已知方程①

請判斷這兩個方程是否有解?并說明理由;

Ⅱ)已知 ,求 的值.

查看答案和解析>>

同步練習冊答案