精英家教網 > 初中數學 > 題目詳情
(2005•余姚市)如圖,AB為⊙O直徑,過弦AC的點C作CF⊥AB于點D,交AE所在直線于點F.
求證:AC2=AE•AF.

【答案】分析:要證明AC2=AE•AF,先把乘積的形式轉化為比例的形式,然后看看在哪兩個三角形中,看是不是能通過證明三角形的相似來證明.
解答:證明:延長CF交⊙O于G,連接AG、EG,
∵CF⊥AB于點D,AB為⊙O直徑,
∴AC=AG,∠C=∠AGC.
∵∠E=∠C,
∴∠AGC=∠E.
∵∠GAF=∠EAG,
∴△GAF∽△EAG.
∴AG:AE=AF:AG,AC:AE=AF:AC.
∴AC2=AE•AF.
點評:乘積的形式通常可以轉化為比例的形式,通過相似三角形的性質得出.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•余姚市)如圖,AB為⊙O直徑,過弦AC的點C作CF⊥AB于點D,交AE所在直線于點F.
求證:AC2=AE•AF.

查看答案和解析>>

科目:初中數學 來源:2005年浙江省寧波市余姚市中考數學試卷(解析版) 題型:解答題

(2005•余姚市)如圖,AB為⊙O直徑,過弦AC的點C作CF⊥AB于點D,交AE所在直線于點F.
求證:AC2=AE•AF.

查看答案和解析>>

同步練習冊答案