【題目】為了解某區(qū)八年級(jí)學(xué)生的睡眠情況,隨機(jī)抽取了該區(qū)八年級(jí)學(xué)生部分學(xué)生進(jìn)行調(diào)查.已知D組的學(xué)生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計(jì)圖表.
一、學(xué)生睡眠情況分組表(單位:小時(shí))
組別 | 睡眠時(shí)間 |
二、學(xué)生睡眠情況統(tǒng)計(jì)圖
根據(jù)圖表提供的信息,回答下列問題:
(1)試求“八年級(jí)學(xué)生睡眠情況統(tǒng)計(jì)圖”中的a的值及a對應(yīng)的扇形的圓心角度數(shù);
(2)如果睡眠時(shí)間x(時(shí))滿足:,稱睡眠時(shí)間合格.已知該區(qū)八年級(jí)學(xué)生有3250人,試估計(jì)該區(qū)八年級(jí)學(xué)生睡眠時(shí)間合格的共有多少人?
(3)如果將各組別學(xué)生睡眠情況分組的最小值(如C組別中,取),B、C、D三組學(xué)生的平均睡眠時(shí)間作為八年級(jí)學(xué)生的睡眠時(shí)間的依據(jù).試求該區(qū)八年級(jí)學(xué)生的平均睡眠時(shí)間.
【答案】(1),對應(yīng)扇形的圓心角度數(shù)為18;(2)該區(qū)八年級(jí)學(xué)生睡眠時(shí)間合格的共有人;(3)該區(qū)八年級(jí)學(xué)生的平均睡眠時(shí)間為小時(shí).
【解析】
(1)根據(jù)各部分的和等于1即可求得,然后根據(jù)圓心角的度數(shù)=360×百分比求解即可;
(2)合格的總?cè)藬?shù)=八年級(jí)的總?cè)藬?shù)×八年級(jí)合格人數(shù)所占百分比;
(3)分別計(jì)算B、C、D三組抽取的學(xué)生數(shù),然后根據(jù)平均數(shù)的計(jì)算公式即可求得抽取的B、C、D三組學(xué)生的平均睡眠時(shí)間,即可估計(jì)該區(qū)八年級(jí)學(xué)生的平均睡眠時(shí)間.
(1)根據(jù)題意得:;
對應(yīng)扇形的圓心角度數(shù)為:360×5%=18;
(2)根據(jù)題意得:(人),
則該區(qū)八年級(jí)學(xué)生睡眠時(shí)間合格的共有人;
(3)∵抽取的D組的學(xué)生有15人,
∴抽取的學(xué)生數(shù)為:(人),
∴B組的學(xué)生數(shù)為:(人),
C組的學(xué)生數(shù)為:(人),
∴B、C、D三組學(xué)生的平均睡眠時(shí)間:(小時(shí)),
該區(qū)八年級(jí)學(xué)生的平均睡眠時(shí)間為小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,AB=DC,過點(diǎn)D作DE⊥BC,垂足為E,并延長DE至F,使EF=DE.聯(lián)結(jié)BF、CD、AC.
(1)求證:四邊形ABFC是平行四邊形;
(2)如果DE2=BE·CE,求證四邊形ABFC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩所學(xué)校的學(xué)生都參加了某次體育測試,成績均為7﹣10分,且為整數(shù).亮亮分別從這兩所學(xué)校各隨機(jī)抽取一部分學(xué)生的測試成績,共200份,并繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)這200份測試成績的中位數(shù)是 分,m= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖中,求成績?yōu)?/span>10分所在扇形的圓心角的度數(shù).
(3)亮亮算出了“1名A校學(xué)生的成績被抽到”的概率是,請你估計(jì)A校成績?yōu)?/span>8分的學(xué)生大約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,若∠AEC=∠ODB.
(1)求證:BD是⊙O的切線;
(2)當(dāng)AB=10,BC=8時(shí),求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O中,AB為弦,直線PO交⊙O于點(diǎn)M、N,PO⊥AB于C,過點(diǎn)B作直徑BD,連接AD、BM、AP.
(1)求證:PM∥AD;
(2)若∠BAP=2∠M,求證:PA是⊙O的切線;
(3)若AD=6,tan∠M=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船沿正南方向以30海里/時(shí)的速度勻速航行,在M處觀測到燈塔P在西偏南68°方向上,航行2小時(shí)后到達(dá)N處,觀測燈塔P在西偏南46°方向上,若該船繼續(xù)向南航行至離燈塔最近位置,則此時(shí)輪船離燈塔的距離約為(由科學(xué)計(jì)算器得到sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )
A. 22.48海里 B. 41.68海里 C. 43.16海里 D. 55.63海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣1與x軸的交點(diǎn)為A(﹣1,0),B(2,0),且與y軸交于C點(diǎn).
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)C關(guān)于x軸的對稱點(diǎn)為C1,M是線段BC1上的一個(gè)動(dòng)點(diǎn)(不與B、C1重合),ME⊥x軸,MF⊥y軸,垂足分別為E、F,當(dāng)點(diǎn)M在什么位置時(shí),矩形MFOE的面積最大?說明理由.
(3)已知點(diǎn)P是直線y=x+1上的動(dòng)點(diǎn),點(diǎn)Q為拋物線上的動(dòng)點(diǎn),當(dāng)以C、C1、P、Q為頂點(diǎn)的四邊形為平行四邊形時(shí),求出相應(yīng)的點(diǎn)P和點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場家電專柜購進(jìn)一批甲,乙兩種電器,甲種電器共用了10 350元,乙種電器共用了9 600元,甲種電器的件數(shù)是乙種電器的1.5倍,甲種電器每件的進(jìn)價(jià)比乙種電器每件的進(jìn)價(jià)少90元.
(1)甲、乙兩種電器各購進(jìn)多少件?
(2)商場購進(jìn)兩種電器后,按進(jìn)價(jià)提高40%后標(biāo)價(jià)銷售,很快全部售完,求售完這批電器商場共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,4),雙曲線的圖像經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com