【題目】在△ABC中,BD為∠ABC的平分線.
(1)如圖1,∠C=2∠DBC,∠A=60°,求證:△ABC為等邊三角形;

(2)如圖2,若∠A=2∠C,BC=8,AB=4.8,求AD的長度;

(3)如圖3,若∠ABC=2∠ACB,∠ACB的平分線OC與BD相交于點O,且OC=AB,求∠A的度數(shù).

【答案】
(1)

解:∵BD為∠ABC的平分線,

∴∠ABC=2∠DBC

∵∠C=2∠DBC,

∴∠ABC=∠C,

∴AB=AC,

∵∠A=60°,

∴△ABC是等邊三角形


(2)

解:如圖2,截取BE=AB,連接DE,

在△ABD與△EBD中, ,

∴△ABD≌△EBD,

∴∠A=∠DEB,AD=ED,

∵∠A=2∠C,

∴∠DEB=2∠C,

∵∠DEB=∠C=∠EDB,

∴∠C+∠EDB=2∠C,

∴∠C=∠EDB,

∴ED=EC,

∵AB=4.8,

∴CE=BC﹣BE=3.2,

∴AD=DE=CE=3.2


(3)

解:如圖3,過B作BF平分∠DBC交AC于F,

∵BD平分∠ABC,

∴∠ABD=∠CBD= ∠ABC,

即∠ABC=2∠ABD=2∠CBD,

∵∠ABC=2∠ACB,

∴∠ACB=∠ABD=∠CBD,

∵OC平分∠ACB,BF平分∠DBC,

∴∠1=∠3= ∠DBC,∠4=∠2= ∠ACB,

∴∠1=∠2=∠3=∠4,

在△OBC與△FCB中, ,

∴△OBC≌△FCB,

∴OC=BF,

∵AB=OC,

∴BF=AB,

∵∠ABF=∠ABD+∠3,∠AFB=∠ACB+∠1,

∵∠ABD=∠ACB,∠1=∠3,

∴∠ABF=∠AFB,

∴AB=AF,

∴AB=BF=AF,

∴△ABF為等邊三角形,

∴∠A=60°


【解析】(1)由BD為∠ABC的平分線,得到∠ABC=2∠DBC,等量代換得到∠ABC=∠C,證得AB=AC,即可得到結(jié)論;(2)如圖2,截取BE=AB,連接DE,推出△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)得到∠A=∠DEB,AD=ED,由∠A=2∠C,得到∠DEB=2∠C,求出∠C=∠EDB,得到ED=EC即可得到結(jié)論;(3)過B作BF平分∠DBC交AC于F,根據(jù)角平分線的性質(zhì)得到BD平分∠ABC,∠ABC=2∠ABD=2∠CBD,由∠ABC=2∠ACB,得到∠ACB=∠ABD=∠CBD,由角平分線的定義得到∠1=∠3= ∠DBC,∠4=∠2= ∠ACB,推出△OBC≌△FCB,根據(jù)全等三角形的性質(zhì)得到OC=BF,由AB=OC,得到BF=AB等量代換得到∠ABF=∠AFB,求得AB=AF,即可得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解角的平分線的相關(guān)知識,掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線,以及對角平分線的性質(zhì)定理的理解,了解定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D是BC邊的中點,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn),且DE=DF,求證:

(1)BE=CF;
(2)AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BD,CD分別平分∠ABC,∠ACB,M,N,Q分別在DB,DC,BC的延長線上,BE,CE分別平分∠MBC,∠BCN,BF,CF分別平分∠EBC,∠ECQ,則∠F=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線yx2先向左平移1個單位長度,再向下平移3個單位長度,得到新的拋物線解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

如圖①,在中,試說明.

分析:通過畫平行線,將、、作等量代換,使各角之和恰為一個平角,依輔助線不同而得多種方法.

:如圖②,延長到點,過點 //.

因為//(作圖所知),

所以,(兩直線平行,同位角、內(nèi)錯角相等).

又因為(平角的定義),

所以(等量代換).

如圖③,過上任一點,作//, //,這種添加輔助線的方法能說?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗和小明玩數(shù)學(xué)游戲,小麗取出一個不透明的口袋,口袋中裝有四張分別標有數(shù)字2,3,4,6的卡片,卡片除數(shù)字外其余都相同,小麗要求小明從中隨機抽取一張卡片并記錄下卡片上的數(shù)字,將卡片放回洗勻,再次從中隨機抽取一張卡片,同樣記錄下卡片上的數(shù)字.

(1)請用畫樹狀圖或列表的方法表示小明兩次抽取卡片的所有可能出現(xiàn)的結(jié)果;

(2)求小明抽到的兩張卡片上的數(shù)都能被2整除的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,D,E分別為AC,BC上的點,且CE=CD,連接DE,AD,BE,F(xiàn)為線段AD的中點,連接CF.

(1)求證:BE=2CF;

(2)如圖2,把△DEC繞點C順時針旋轉(zhuǎn)α角(0°<α<90°),其他條件不變,試探究線段BE與CF的位置關(guān)系,并說明理由;

(3)如圖3,把△DEC繞點C順時針旋轉(zhuǎn)45°,BE,CD交于點G.若∠DCF=30°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面去括號正確的是( )

A. a(b+1)ab1B. 2(x+3)2x+3

C. x(y1)xy1D. 3(mn)=﹣3m3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列判斷錯誤的是(

A.有兩組鄰邊相等的四邊形是菱形B.有一角為直角的平行四邊形是矩形

C.對角線互相垂直且相等的平行四邊形是正方形D.矩形的對角線互相平分且相等

查看答案和解析>>

同步練習(xí)冊答案