如圖,有一圓形透明玻璃容器,高15cm,底面周長為24cm,在容器內(nèi)壁柜上邊緣4cm的A處,停著一只小飛蟲,一只蜘蛛從容器底部外向上爬了3cm的B處時(B處與A處恰好相對),發(fā)現(xiàn)了小飛蟲,問蜘蛛怎樣爬去吃小飛蟲最近?它至少要爬多少路?(厚度忽略不計).

【答案】分析:應讀懂圖意,有虛線的一側(cè)應是開口的.應把A,B放在平面圖形內(nèi),實際是求兩點在一條直線同側(cè)時,距離最小,此時應作出其中一點關(guān)于這條直線的對稱點,連接另一點與這條直線的交點就是應經(jīng)過的點,然后利用勾股定理求得最短距離.
解答:解:將圓柱沿著A,B所在直線垂直切開,并將半圓柱側(cè)面展開成一個矩形,(2分)
如圖所示,
作BO⊥AO于O,
則AO,BO分別平行于矩形的兩邊,
作A點關(guān)于D點的對稱點A‵,連A‵B,
則△A′BO為直角三角形,
且BO==12,A′O=(15-3)+4=16,(4分)
由勾股定理得
A′B2=A′O2+BO2=162+122=400,
∴A′B=20.(7分)
故蜘蛛沿B外壁-C內(nèi)壁-A路線爬行最近,且它至少要走20cm.(8分)
點評:立體圖形中的最短距離,通常要轉(zhuǎn)換為平面圖形的兩點間的線段長來進行解決.求兩點在某一直線同一側(cè)的最短距離的方法應掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

76、如圖,有一圓形展廳,在其圓形邊緣上的點A處安裝了一臺監(jiān)視器,它的監(jiān)控角度是65度.為了監(jiān)控整個展廳,最少需在圓形邊緣上共安裝這樣的監(jiān)視器
3
臺.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,有一圓形展廳,在其圓形邊緣上的點A處安裝了一臺監(jiān)視器,它的監(jiān)控角度是65°.為了監(jiān)控整個展廳,最少需在圓形邊緣上共安裝這樣的監(jiān)視器( 。┡_.
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,有一圓形透明玻璃容器,高15cm,底面周長為24cm,在容器內(nèi)壁柜上邊緣4cm的A處,停著一只小飛蟲,一只蜘蛛從容器底部外向上爬了3cm的B處時(B處與A處恰好相對),發(fā)現(xiàn)了小飛蟲,問蜘蛛怎樣爬去吃小飛蟲最近?它至少要爬多少路?(厚度忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,有一圓形透明玻璃容器,高15cm,底面周長為24cm,在容器內(nèi)壁柜上邊緣4cm的A處,停著一只小飛蟲,一只蜘蛛從容器底部外向上爬了3cm的B處時(B處與A處恰好相對),發(fā)現(xiàn)了小飛蟲,問蜘蛛怎樣爬去吃小飛蟲最近?它至少要爬多少路?(厚度忽略不計).

查看答案和解析>>

同步練習冊答案