精英家教網 > 初中數學 > 題目詳情
如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F.
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
(1)證明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C(等邊對等角).
∵D是BC的中點,
∴BD=CD.
在△BED和△CFD中,
∠BED=∠CFD
∠B=∠C
BD=CD

∴△BED≌△CFD(AAS).
∴DE=DF

(2)∵AB=AC,∠A=60°,
∴△ABC為等邊三角形.
∴∠B=60°,
∵∠BED=90°,
∴∠BDE=30°,
∴BE=
1
2
BD,
∵BE=1,
∴BD=2,
∴BC=2BD=4,
∴△ABC的周長為12.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

當等腰三角形被一條直線分割成兩個較小的三角形也是等腰三角形時,原等腰三角形的頂角度數是多少?這條直線怎樣畫?(討論所有可能的解,并逐一畫圖表示)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,AD是直角三角形△ABC斜邊上的中線,把ADC沿AD對折,點C落在點C′處,連接CC′,則圖中共有等腰三角形______個.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知等邊△OAB的邊長為a,以AB邊上的高OA1為邊,按逆時針方向作等邊△OA1B1,A1B1與OB相交于點A2
(1)求線段OA2的長;
(2)若再以OA2為邊,按逆時針方向作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進行下去,得到△OA3B3,△OA4B4,…△OAnBn(如圖).求△OA6B6的周長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,P、Q是△ABC的邊BC上的兩點,且BP=PQ=QC=AP=AQ,則∠ABC的大小等于______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,
(1)連接AQ、CP交于點M,則在P、Q運動的過程中,∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數;
(2)何時△PBQ是直角三角形?
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

等邊三角形的面積為8
3
,它的高為(  )
A.2
2
B.4
3
C.2
6
D.2
5

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列說法中,正確的是( 。
A.等邊三角形的“三線合一”
B.有一個角是60°的三角形是等邊三角形
C.在直角三角形中,直角邊等于斜邊的一半
D.有兩個角相等的三角形是等邊三角形

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直角坐標系中,點A的坐標為(a,0),以線段OA為邊在第四象限內作等邊△AOB,點C為x正半軸上一動點(OC>a>0),連接BC,以線段BC為邊在第四象限內作等邊△CBD,直線DA交y軸于點E.
(1)求證:OC=AD.
(2)隨著點C位置的變化,點E的位置是否會發(fā)生變化?若沒有變化,求出點E的坐標;若有變化,請說明理由.
(3)當C點運動到使OA:AC=1:3時,求出此時D點的坐標.

查看答案和解析>>

同步練習冊答案