【題目】如圖,在平面直角坐標系中,點,的坐標分別為,,過,,三點作圓,點在第一象限部分的圓上運動,連結,過點作的垂線交的延長線于點,下列說法:①;②;③的最大值為10.其中正確的是( )
A. ①②B. ②③C. ①③D. ①②③
【答案】C
【解析】
連接AB,由題意得AB為圓的直徑,根據(jù)同角的余角相等可得∠AOC=∠BOD,根據(jù)圓周角定理得∠OCB=∠OAB,可推出∠OBA=∠D,根據(jù)勾股定理求出AB,可出sin∠D的值,證出△OCD∽△OAB,則 ,OC取最大值等于直徑時CD的值最大.
解:連接AB,
∵∠DOC=90°,∠BOA=90°,
∴∠BOD+∠BOC=90°,∠AOC+∠BOC =90°,
∴∠AOC=∠BOD,①正確;
∵∠DOC=90°,∠BOA=90°,
∴∠OCB+∠D=90°,∠OAB+∠OBA =90°,
∵∠OCB=∠OAB,
∴∠OBA=∠D,
∵OA=2,OB=4,AB= ,
∴sin∠D=sin∠OBA= ,②錯誤;
∵∠DOC=∠BOA=90°,∠OCB=∠OAB,
∴△OCD∽△OAB,
∴
∵∠BOA=90°,
∴AB為圓的直徑,
∴OC取最大值等于直徑AB時CD的值最大,
∴CD的最大值 ,③正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,F為BE上的一點,連接CF并延長交AB于點M,MN⊥CM交射線AD于點N
(1)如圖1,當點F為BE的中點時,求證:AM=CE;
(2)如圖2,若==n(n≥3)時,請直接寫出的值;
(3)若矩形ABCD(AB>BC)對角線AC交MN于T,H為邊BC上一點,∠CMH=45°且=(如圖3).若CF平分∠ACB,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結論:①2a﹣b=0;②(a+c)2<b2;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成(1)~(3)題:
數(shù)學課上,老師出示了這樣一道題:
如圖1,△ABC中,AB=AC,∠BAC=90°,點D是BC的中點,E是AC的中點,經(jīng)過點A、C作射線BE的垂線,垂足分別為點F、G,連接AG.探究線段DF和AG的關系.某學習小組的同學經(jīng)過思考后,交流了自己的想法:
小明:“經(jīng)過觀察和度量,發(fā)現(xiàn)∠ABF和∠ACG相等.”小剛:“經(jīng)過觀察和度量,發(fā)現(xiàn)有兩條線段和AF相等.”
小偉:“通過構造全等三角形,經(jīng)過進一步推理,可以得到線段DF和AG的關系.”
……
老師:“若點E不是AC的中點,其他條件不變(如圖2),可以求出的值.”
(1)求證:AF=FG;
(2)探究線段DF和AG的關系,并證明;
(3)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象頂點坐標為(1,4),且經(jīng)過點C(3,0).
(1)求該二次函數(shù)的解析式;
(2)當x取何值時,y隨x的增大而減小?
(3)當時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“美麗泰州”的工作部署,市政府計劃對城區(qū)道路進行改造,現(xiàn)安排甲、乙兩個工程隊完成該改造工作.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造720米的道路比乙隊改造同樣長的道路少用4天.
(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?
(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,若需改造的道路全長2400米,改造總費用不超過195萬元,則至少安排甲隊工作多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com