【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)BD=2;BC=.
【解析】試題分析:(1)要證DE是⊙O的切線,只要連接OC,再證∠DCO=90°即可.
(2)已知兩邊長(zhǎng),求其它邊的長(zhǎng),可以證明三角形相似,由相似三角形對(duì)應(yīng)邊成比例來(lái)求.
試題解析:解:(1)連接OC.∵AE⊥DC,∴∠E=90°.∵AC平分∠EAB,∴∠EAC=∠BAC.
又∵OA=OC,∴∠ACO=∠BAC,∴∠EAC=∠ACO,∴OC∥AE,∴∠OCD=∠E=90°,∴DC是⊙O的切線.
(2)∵∠D=∠D,∠E=∠OCD=90°,∴△DCO∽△DEA,∴ ,∴,∴,∴BD=2.∵AB是⊙O的直徑,∴∠ACB=90°,∴∠E=∠ACB=90°.∵∠EAC=∠BAC,∴Rt△EAC∽Rt△CAB,∴,∴,∴AC2=.由勾股定理得:BC===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解本校八年級(jí)學(xué)生生物考試測(cè)試情況,隨機(jī)抽取了本校八年級(jí)部分學(xué)生的生物測(cè)試成績(jī)?yōu)闃颖,?/span>A(優(yōu)秀)、B(良好)、C(合格)、D(不合格)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖表.請(qǐng)你結(jié)合圖表中所給信息解答下列問(wèn)題:
等級(jí) | 人數(shù) |
A(優(yōu)秀) | 40 |
B(良好) | 80 |
C(合格) | 70 |
D(不合格) |
(1)請(qǐng)將上面表格中缺少的數(shù)據(jù)補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中“A”部分所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)該校八年級(jí)共有1200名學(xué)生參加了身體素質(zhì)測(cè)試,試估計(jì)測(cè)試成績(jī)合格以上(含合格)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是線段CD上的動(dòng)點(diǎn).
(1)如圖1,若CF=CD,求證:ΔAEF是直角三角形;
(2)如圖2,若點(diǎn)F與點(diǎn)D重合,點(diǎn)G在ED上,且AG=AD,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)有4張桌子,用第一種擺設(shè)方式,可以坐 人;用第二種擺設(shè)方式,可以坐 人;
(2)有n張桌子,用第一種擺設(shè)方式可以坐 人;用第二種擺設(shè)方式,可以坐 人(用含有n的代數(shù)式表示);
(3)一天中午,餐廳要接待120位顧客共同就餐,但餐廳中只有30張這樣的長(zhǎng)方形桌子可用,且每6張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB,于點(diǎn)E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
符號(hào)、p分別表示一種運(yùn)算,它對(duì)一些數(shù)的運(yùn)算結(jié)果如下:
(0)=-1, (1)=0 , (2)=1 , (-3)=-4, (-4)=-5,……
p(-1)=-2,p()=1,p()=, p(2)=4, p(-3)=-6,……
根據(jù)以上運(yùn)算規(guī)律,完成下列問(wèn)題:
(1)計(jì)算:(-5)×p()+2
(2)已知x為有理數(shù),且(x)+ p()=2×(-4),求x的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).
(1)求這條拋物線的表達(dá)式;
(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車(chē)司機(jī)小王某天下午營(yíng)運(yùn)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍?單位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.
(1)將最后一名乘客送到目的地時(shí),小王距下午出車(chē)時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?
(2)若汽車(chē)耗油量為0.05升/千米,這天下午小王的汽車(chē)共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com