【題目】如圖,在等邊三角形ABC的AC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相交于點O.若BO=6,PO=2,則AP的長,AO的長分別為__________.
【答案】4,.
【解析】
先通過條件證明△ABP≌△ACQ,得到∠ABP=∠CAQ,可證明△APO∽△BPA,得出,則AP2=OPBP,可求出AP,設(shè)OA=x,則AB=2x,在Rt△ABE中,由AE2+BE2=AB2,得出x的值即可得解.
解:解:∵△ABC是等邊三角形
∴∠BAP=∠ACQ=∠ABQ=60°,AB=AC=BC,
∵在△ABP和△ACQ中
,
∴△ABP≌△ACQ (SAS),
∴∠ABP=∠CAQ,
∵∠APO=∠BPA,
∴△APO∽△BPA,
∴,
∴AP2=OPBP,
∵BO=6,PO=2,
∴BP=8,
∴AP2=2×8=16,
∴AP=4,
∵∠BAC=60°,
∴∠BAQ+∠CAQ=60°,
∴∠BAQ+∠ABP=60°,
∵∠BOQ=∠BAQ+ABP,
∴∠BOQ=60°,
過點B作BE⊥OQ于點E,
∴∠OBE=30°,
∵OB=6,
∴OE=3,BE=3,
∵,
設(shè)OA=x,則AB=2x,
在Rt△ABE中,AE2+BE2=AB2,
∴(x+3)2+(3)2=(2x)2,
解得:x=或x=1-(舍去),
∴AO=1+.
故答案為:4,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖1和圖2,四邊形中,已知,,點、分別在、上,.
(1)①如圖1,若、都是直角,把繞點逆時針旋轉(zhuǎn)90°至,使與重合,直接寫出線段、和之間的數(shù)量關(guān)系____________________;
②如圖2,若、都不是直角,但滿足,線段、和之間①中的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.
(2)拓展:如圖3,在中,,,點、均在邊上,且,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,與都是等腰直角三角形,直角邊,在同一條直線上,點、分別是斜邊、的中點,點為的中點,連接,,,,.
(1)觀察猜想:
圖1中,與的數(shù)量關(guān)系是______,位置關(guān)系是______.
(2)探究證明:
將圖1中的繞著點順時針旋轉(zhuǎn),得到圖2,與、分別交于點、,判斷的形狀,并說明理由;
(3)拓展延伸:
把繞點任意旋轉(zhuǎn),若,,請直接寫出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點是邊上的中點,點是邊上的一個動點,延長到,使,作,其中點在上.
(1)如圖①,若,則_______.
(2)如圖②,若,求的值;
(3)如圖③,若,延長到點,使得,連接,在點運動的過程中,探究:當(dāng)的值為多少時,線段與的長度和取得最小值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O的兩條弦,相交于點,且.
(1)如圖1,連接,求證:.
(2)如圖2,在,在上取一點,使得,交于點,連接.
①判斷與是否相等,并說明理由.
②若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,折疊矩形紙片ABCD,具體操作:①點E為AD邊上一點(不與點A,D重合),把△ABE沿BE所在的直線折疊,A點的對稱點為F點;②過點E對折∠DEF,折痕EG所在的直線交DC于點G,D點的對稱點為H點.
(1)求證:△ABE∽△DEG.
(2)若AB=3,BC=5
①點E在移動的過程中,求DG的最大值
②如圖2,若點C恰在直線EF上,連接DH,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸,y軸,交于A、B兩點,點C是BO的中點且
(1)求直線AC的解析式;
(2)若點M是直線AC的一點,當(dāng)時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;②(a+c)2<b2;③當(dāng)﹣1<x<3時,y<0;④當(dāng)a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com