【題目】如圖①所示,已知MN∥PQ,點(diǎn)B在MN上,點(diǎn)C在PQ上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在點(diǎn)C的右側(cè),∠ADC,∠ABC的平分線(xiàn)相交于點(diǎn)E(不與B,D點(diǎn)重合),∠CBN=110°.

(1)若∠ADQ=140°,寫(xiě)出∠BED的度數(shù) (直接寫(xiě)出結(jié)果即可);

(2)若∠ADQ=m°,將線(xiàn)段AD沿DC方向平移,使點(diǎn)D移動(dòng)到點(diǎn)C的左側(cè),其他條件不變,如圖②所示,求∠BED的度數(shù)(用含m的式子表示).

【答案】(1)55°;(2) ∠BED=215°-m°.

【解析】

(1)過(guò)點(diǎn)E作EFPQ,根據(jù)鄰補(bǔ)角的定義求出CBM=70°,ADP=40°,再根據(jù)角平分線(xiàn)的定義求出EBM=35°,EDP=20°,再根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得DEF=EDP,FEB=EBM,然后根據(jù)BED=DEF+FEB代入數(shù)據(jù)計(jì)算即可得解;

(2)過(guò)點(diǎn)E作EFPQ,根據(jù)鄰補(bǔ)角的定義求出CBM=70°,ADP=m°,再根據(jù)角平分線(xiàn)的定義求出EBM=35°,EDP=m°,再根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得DEF=EDP,FEB=EBM,然后根據(jù)BED=DEF+FEB代入數(shù)據(jù)計(jì)算即可得解.

(1)如圖(1),過(guò)點(diǎn)E作EFPQ.

∵∠CBN=110°,ADQ=140°,

∴∠CBM=70°,ADP=40°.

∵∠CDE=ADE,ABE=CBE,

∴∠EBM=35°,EDP=20°.

EFPQ,

∴∠DEF=EDP=20°.

EFPQ,MNPQ,

EFMN,

∴∠FEB=EBM=35°,

∴∠BED=DEF+FEB=20°+35°=55°;

故答案為:55°

(2)如圖(2),過(guò)點(diǎn)E作EFPQ.

∵∠CBN=110°,

∴∠CBM=70°.

∵∠CDE=ADE,ABE=CBE,

∴∠EBM=35°,EDQ=m°.

EFPQ,

∴∠DEF=180°-EDQ=180°-m°.

EFPQ,MNPQ,

EFMN,

∴∠FEB=EBM=35°,

∴∠BED=DEF+FEB=180°-m°+35°=215°-m°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在數(shù)軸上有A,B兩點(diǎn),點(diǎn)A表示的數(shù)為4,點(diǎn)BA點(diǎn)的左邊,且AB=12.若有一動(dòng)點(diǎn)P從數(shù)軸上點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著數(shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù)為________,P所表示的數(shù)為________(用含t的代數(shù)式表示);

(2)若點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒與Q相距3個(gè)單位長(zhǎng)度?

(3)若點(diǎn)P,Q分別從AB兩點(diǎn)同時(shí)出發(fā),分別以BQAP為邊,在數(shù)軸上方作正方形BQCD和正方形APEF如圖所示.求當(dāng)t為何值時(shí),兩個(gè)正方形的重疊部分面積是正方形APEF面積的一半?請(qǐng)直接寫(xiě)出結(jié)論:t=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算: ﹣4sin30°+(2014﹣π)0﹣22
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以圖1(以O為圓心,半徑1 的半圓)作為基本圖形,分別經(jīng)歷如下變換能得到圖2的序號(hào)是 (多填或錯(cuò)填得0,少填酌情給分)

只要向右平移1個(gè) 單位;

先以直線(xiàn)AB為對(duì)稱(chēng)軸進(jìn)行對(duì)稱(chēng)變換,再向右平移1個(gè)單位;

先繞著O旋轉(zhuǎn)180°,再向右平移1個(gè)單位;

只要繞著某點(diǎn)旋轉(zhuǎn)180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形ABC中,AC=4 cm,BC=3 cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8 cm,DB=2 cm.

(1)求三角形ABC向右平移的距離AD的長(zhǎng);

(2)求四邊形AEFC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,BD為AC的中線(xiàn),過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,過(guò)點(diǎn)A作BD的平行線(xiàn),交CE的延長(zhǎng)線(xiàn)于點(diǎn)F,在AF的延長(zhǎng)線(xiàn)上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)我市“中國(guó)夢(mèng)”“宜賓夢(mèng)”主題教育活動(dòng),某中學(xué)在全校學(xué)生中開(kāi)展了以“中國(guó)夢(mèng)我的夢(mèng)”為主題的征文比賽,評(píng)選出一、二、三等獎(jiǎng)和優(yōu)秀獎(jiǎng).小明同學(xué)根據(jù)獲獎(jiǎng)結(jié)果,繪制成如圖所示的統(tǒng)計(jì)表和數(shù)學(xué)統(tǒng)計(jì)圖.

等級(jí)

頻數(shù)

頻率

一等獎(jiǎng)

a

0.1

二等獎(jiǎng)

10

0.2

三等獎(jiǎng)

b

0.4

優(yōu)秀獎(jiǎng)

15

0.3

請(qǐng)你根據(jù)以上圖表提供的信息,解答下列問(wèn)題:

(1)a= , b= , n=
(2)學(xué)校決定在獲得一等獎(jiǎng)的作者中,隨機(jī)推薦兩名作者代表學(xué)校參加市級(jí)比賽,其中王夢(mèng)、李剛都獲得一等獎(jiǎng),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求恰好選中這二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面計(jì)算+++…+的過(guò)程,然后填空.

解:=-),=-),…,=-),

+++…+

=-)+-)+-)+…+-

=-+-+-+…+-

=-

=

以上方法為裂項(xiàng)求和法,請(qǐng)參考以上做法完成:

(1)+=______;

(2)當(dāng)+++…+x=時(shí),最后一項(xiàng)x=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著車(chē)輛的增加,交通違規(guī)的現(xiàn)象越來(lái)越嚴(yán)重,交警對(duì)某雷達(dá)測(cè)速區(qū)檢測(cè)到的一組汽車(chē)的時(shí)速數(shù)據(jù)進(jìn)行整理,得到其頻數(shù)及頻率如表(未完成):

數(shù)據(jù)段

頻數(shù)

頻率

30﹣40

10

0.05

40﹣50

36

50﹣60

0.39

60﹣70

70﹣80

20

0.10

總計(jì)

200

1


(1)請(qǐng)你把表中的數(shù)據(jù)填寫(xiě)完整;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果汽車(chē)時(shí)速不低于60千米即為違章,則違章車(chē)輛共有多少輛?

查看答案和解析>>

同步練習(xí)冊(cè)答案