【題目】如圖,用鄰邊分別為a,b(a<b)的矩形硬紙板裁出以a為直徑的兩個半圓,再裁出與矩形的較長邊、兩個半圓均相切的兩個小圓.把半圓作為圓錐形圣誕帽的側(cè)面,小圓恰好能作為底面,從而做成兩個圣誕帽(拼接處材料忽略不計(jì)),則a與b滿足的關(guān)系式是( )

A.b= a
B.b= a
C.b=
D.b= a

【答案】D
【解析】解:∵半圓的直徑為a,
∴半圓的弧長為
∵把半圓作為圓錐形圣誕帽的側(cè)面,小圓恰好能作為底面,
∴設(shè)小圓的半徑為r,則:2πr=
解得:r=
∴AC= a﹣r= ,
如圖小圓的圓心為B,半圓的圓心為C,作BA⊥CA于A點(diǎn),
則:AC2+AB2=BC2
即:( 2+( 2=( 2
整理得:b= a
故選D.

首先利用圓錐形圣誕帽的底面周長等于側(cè)面的弧長求得小圓的半徑,然后利用兩圓外切的性質(zhì)求得a、b之間的關(guān)系即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關(guān)系如圖所示:

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線 y=x3 x 軸、y 軸分別交于點(diǎn) A、B,線段 AB 為直角邊在第一內(nèi)作等腰 RtABC,∠BAC90. 點(diǎn) P x 軸上的一個動點(diǎn),設(shè) P(x0)

(1)當(dāng) x ______________時,PBPC 的值最小;

(2)當(dāng) x ______________時,|PBPC|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形按一定規(guī)律排列,觀察并回答:

(1)依照此規(guī)律,第四個圖形共有   個★,第六個圖形共有   個★;

(2)第n個圖形中有★   個;

(3)根據(jù)(2)中的結(jié)論,第幾個圖形中有2020個★?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(2m+3x+m-1

1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;

2)若函數(shù)圖象與y軸上的的交點(diǎn)位于原點(diǎn)上方,求m的取值范圍;

3)若函數(shù)圖象平行于直線y=x+1,求m的值;

4)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準(zhǔn)菱形.

(1)判斷與推理:
①鄰邊長分別為2和3的平行四邊形是階準(zhǔn)菱形;
(2)小明為了剪去一個菱形,進(jìn)行了如下操作:如圖2,把ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請證明四邊形ABFE是菱形.
(3)操作、探究與計(jì)算:
①已知ABCD的鄰邊長分別為1,a(a>1),且是3階準(zhǔn)菱形,請畫出ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知ABCD的鄰邊長分別為a,b(a>b),滿足a=6b+r,b=5r,請寫出ABCD是幾階準(zhǔn)菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )

A.
B.
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案