19.如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)D在AB延長(zhǎng)線(xiàn)上,且∠BCD=∠A.
(1)求證:DC是⊙O的切線(xiàn);
(2)若∠A=30°,AC=2$\sqrt{3}$,求圖中陰影部分的面積.

分析 (1)連結(jié)OC,如圖,根據(jù)圓周角定理得∠ACB=90°,再利用等腰三角形的性質(zhì)得∠A=∠OCA,∠OBC=∠OCB,則∠A+∠BCO=90°,加上∠BCD=∠A,所以∠BCD+∠BCO=90°,于是根據(jù)切線(xiàn)的判定方法可判斷DC是⊙O的切線(xiàn);
(2)根據(jù)含30度的直角三角形三邊的關(guān)系,在Rt△ACB中計(jì)算出BC=$\frac{\sqrt{3}}{3}$AC=2,AB=2BC=4,再計(jì)算出∠AOC=120°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S扇形AOC-S△AOC進(jìn)行計(jì)算.

解答 (1)證明:連結(jié)OC,如圖,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OA=OC,OB=OC,
∴∠A=∠OCA,∠OBC=∠OCB,
∴∠A+∠BCO=90°,
∵∠BCD=∠A,
∴∠BCD+∠BCO=90°,即∠OCD=90°,
∴OC⊥CD,
∴DC是⊙O的切線(xiàn);
(2)在Rt△ACB中,∵∠A=30°,
∴BC=$\frac{\sqrt{3}}{3}$AC=2,
AB=2BC=4,
∵∠AOC=180°-∠A-∠ACO=120°,
∴圖中陰影部分的面積=S扇形AOC-S△AOC=S扇形AOC-$\frac{1}{2}$S△ABC=$\frac{120•π•{2}^{2}}{360}$-$\frac{1}{2}$•$\frac{1}{2}$•2•2$\sqrt{3}$=$\frac{4}{3}$π-$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了切線(xiàn)的判定:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).在判定一條直線(xiàn)為圓的切線(xiàn)時(shí),當(dāng)已知條件中未明確指出直線(xiàn)和圓是否有公共點(diǎn)時(shí),常過(guò)圓心作該直線(xiàn)的垂線(xiàn)段,證明該線(xiàn)段的長(zhǎng)等于半徑;當(dāng)已知條件中明確指出直線(xiàn)與圓有公共點(diǎn)時(shí),常連接過(guò)該公共點(diǎn)的半徑,證明該半徑垂直于這條直線(xiàn).注意把不規(guī)律圖形的面積的計(jì)算問(wèn)題化為規(guī)則圖形面積的和差的計(jì)算問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.甲、乙兩名同學(xué)在本學(xué)期的5次考試中,數(shù)學(xué)成績(jī)?nèi)绫恚?br />
月份8月9月10月11月12月
甲  85 9095 88 92 
乙  80 100100 80  90
(1)求甲、乙兩人的數(shù)學(xué)平均成績(jī)各是多少?
(2)甲、乙兩人的數(shù)學(xué)成績(jī)哪個(gè)較穩(wěn)定?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.當(dāng)x分別取-3,-1,0,2時(shí),使二次根式$\sqrt{2-x}$的值為有理數(shù)的是( 。
A.-3B.-1C.0D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)分解因式:(x-4)(x+1)+3x
(2)解方程:3x2+6x-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.因式分解
(1)-3m2+6m-3
(2)4(x+y)2-(x-y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了解學(xué)生零花錢(qián)的使用情況,校團(tuán)委隨機(jī)調(diào)查了本校部分學(xué)生每人一周的零花錢(qián)數(shù)額,并繪制了如圖甲、乙所示的兩個(gè)統(tǒng)計(jì)圖(部分未完成).請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:

(1)校團(tuán)委隨機(jī)調(diào)查了多少學(xué)生?請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(2)表示“50元”的扇形的圓心角是多少度?被調(diào)查的學(xué)生每人一周零花錢(qián)數(shù)額的中位數(shù)是多少元?
(3)為捐助貧困山區(qū)兒童學(xué)習(xí),全校1000名學(xué)生每人自發(fā)地捐出一周的零花錢(qián).請(qǐng)估算全校學(xué)生共捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在△ABC中,AB>AC,BC的垂直平分線(xiàn)DF交△ABC的外角平分線(xiàn)AD于點(diǎn)D,DE⊥AB于點(diǎn)E.求證:BE-AC=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,MN∥BC,BD⊥DC,∠1=∠2=60°.
(1)AB與DE平行嗎?請(qǐng)說(shuō)明理由;
(2)若DC是∠NDE的平分線(xiàn).
①試說(shuō)明∠ABC=∠C;
②試說(shuō)明BD是∠ABC的平分線(xiàn).
(要求:第(1)小題要寫(xiě)出每一步的理由,第(2)小題的理由可省略不寫(xiě).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,正方形ABCD的邊長(zhǎng)為4cm,則圖中陰影部分的面積為( 。
A.6cm2B.8cm2C.16cm2D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案