【題目】甲、乙兩人進(jìn)行慢跑練習(xí),慢跑路程y(米)與所用時(shí)間t(分鐘)之間的關(guān)系如圖所示,下列說(shuō)法錯(cuò)誤的是( )
A. 前2分鐘,乙的平均速度比甲快
B. 5分鐘時(shí)兩人都跑了500米
C. 甲跑完800米的平均速度為100米/分
D. 甲乙兩人8分鐘各跑了800米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F在射線CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,則BE___CF;(填“>”,“<”或“=”);EF,BE,AF三條線段的數(shù)量關(guān)系是:___.
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件___,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立。
(2)如圖3,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),過(guò)點(diǎn)B作BD∥x軸,交y軸于點(diǎn)D,直線AD交反比例函數(shù)y=的圖象于另一點(diǎn)C,則的值為( 。
A. 1:3 B. 1:2 C. 2:7 D. 3:10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在等邊的邊上,,射線于點(diǎn),點(diǎn)是射線上一動(dòng)點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),,則為( )
A. 14B. 13C. 12D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點(diǎn)D在線段AB上運(yùn)動(dòng)(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ,給出下列結(jié)論:
①CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當(dāng)點(diǎn)D在AB的中點(diǎn)時(shí),△PDQ是等邊三角形,其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門(mén)出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門(mén).
(1)以景區(qū)大門(mén)為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.
(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開(kāi)始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程沒(méi)有實(shí)數(shù)根,甲由于看錯(cuò)了二次項(xiàng)系數(shù),求得兩個(gè)根為3和6,乙由于看錯(cuò)了某一項(xiàng)系數(shù)的符號(hào),求得兩個(gè)根為和,則=____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.求證:①△ADC≌△CEB;②DE=AD﹣BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)三角形的第一條邊長(zhǎng)為2a+5b,第二條邊比第一條邊長(zhǎng)3a﹣2b,第三條邊比第二條邊短3a.
(1)則第二邊的邊長(zhǎng)為 ,第三邊的邊長(zhǎng)為 ;
(2)用含a,b的式子表示這個(gè)三角形的周長(zhǎng),并化簡(jiǎn);
(3)若a,b滿足|a﹣5|+(b﹣3)2=0,求出這個(gè)三角形的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com