【題目】為了促進學(xué)生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)
(3)若該校有1500名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?
【答案】
(1)解:根據(jù)題意得:80÷40%=200(人),
則此次共調(diào)查了200人;
(2)解:根據(jù)題意得:60×200×360°=108°,
則文學(xué)社團在扇形統(tǒng)計圖中所占的圓心角度數(shù)為108°
(3)解:根據(jù)題意得:1500×40%=600(人),
則喜歡體育類社團的學(xué)生約有600人.
【解析】(1)由體育社團的人數(shù)除以占的百分比,確定出共調(diào)查的人數(shù)即可;(2)由文學(xué)社團的人數(shù)除以總?cè)藬?shù),再乘以360°即可得到結(jié)果;(3)由體育社團的百分比乘以1500即可得到結(jié)果.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)試判斷△AEF的形狀,并說明理由;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點,按順時針方向旋轉(zhuǎn)度得到;
(3)若BC=8,則四邊形AECF的面積為 . (直接寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2 .
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】主題班會課上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟,根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:
觀點 | 頻數(shù) | 頻率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)參加本次討論的學(xué)生共有人;
(2)表中a= , b=;
(3)將條形統(tǒng)計圖補充完整;
(4)現(xiàn)準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.
(1)求拋物線的解析式;
(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點P作y軸的平行線交直線EO于點G,作PH⊥EO,垂足為H.設(shè)PH的長為l,點P的橫坐標為m,求l與m的函數(shù)關(guān)系式(不必寫出m的取值范圍),并求出l的最大值;
(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個動點,過C作CE垂直于BD的延長線,垂足為E,如圖1
(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖2,求 的值;
(3)如圖3,連接AE.若AE=EC,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,點 E 在 CA 的延長線上,∠E=∠AFE,請判 斷 EF 與 BC 的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,點E在BC上,以CE為直徑的⊙O交AB于點F,AO∥EF
(1)求證:AB是⊙O的切線;
(2)如圖2,連結(jié)CF交AO于點G,交AE于點P,若BE=2,BF=4,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某足球協(xié)會舉辦了一次足球聯(lián)賽,其記分規(guī)定及獎勵方案如下表:
勝一場 | 平一場 | 負一場 | |
積分 | 3 | 1 | 0 |
獎金(元/人) | 1300 | 500 | 0 |
當比賽進行到第11輪結(jié)束(每隊均須比賽11場)時,A隊共積17分,每賽一場,每名參賽隊員均得出場費300元.設(shè)A隊其中一名參賽隊員所得的獎金與出場費的和為w(元).
(1)試說明w是否能等于11400元.
(2)通過計算,判斷A隊勝、平、負各幾場,并說明w可能的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com