在一次數(shù)學活動課上,數(shù)學老師在同一平面內將一副直角三角板如圖位置擺放,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長.

解:
過點B作BM⊥FD于點M,
在△ACB中,∠ACB=90°,∠A=60°,AC=10,
∴∠ABC=30°,BC=AC tan60°=10,
∵AB∥CF,∴∠BCM=∠ABC=30°.
∴BM=BC•sin30°=10×=5,
CM=BC•cos30°=10×=15,
在△EFD中,∠F=90°,∠E=45°,
∴∠EDF=45°,
∴MD=BM=5,
∴CD=CM-MD=15-5
分析:過點B作BM⊥FD于點M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案.
點評:本題考查了解直角三角形的應用,關鍵是能通過解直角三角形求出線段CM、MD的長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網在一次數(shù)學活動課上,老師帶領學生去測一條南北流向的河寬,如圖所示,某學生在河東岸點A處觀測到河對岸水邊有一點C,測得C在A北偏西31°的方向上,沿河岸向北前行20米到達B處,測得C在B北偏西45°的方向上,請你根據(jù)以上數(shù)據(jù),幫助該同學計算出這條河的寬度.(參考數(shù)值:tan31°≈
3
5
,sin31°≈
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次數(shù)學活動課上,老師帶領同學們去測量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進50米到達B處,此精英家教網時測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.
(參考數(shù)據(jù):sin37°≈
3
5
,tan37°≈
3
4
,sin21°≈
9
25
,tan21°≈
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網在一次數(shù)學活動課上,張明同學將矩形ABCD沿直線CE折疊,頂點B恰好落在AD邊上F點處,如圖所示,已知CD=8cm,BE=5cm,則AD=
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網在一次數(shù)學活動課上,老師帶領學生去測長江的寬度,某學生在長江北岸點A處觀測到長江對岸水邊有一點C,測得C在A東南方向上,沿長江邊向東前行200米到達B處,測得C在B南偏東30°的方向上.
(1)畫出學生測量的示意圖;
(2)請你根據(jù)以上數(shù)據(jù),幫助該同學計算出長江的寬度(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次數(shù)學活動課上,王老師給學生發(fā)了一塊長40cm,寬30cm的長方形紙片(如圖),要求折成一個高為5cm的無蓋的且容積最大的長方體盒子.
(1)該如何裁剪呢?請畫出示意圖,并標出尺寸;
(2)求該盒子的容積.

查看答案和解析>>

同步練習冊答案