【題目】植樹節(jié)期間,某單位欲購進(jìn)A、B兩種樹苗,若購進(jìn)A種樹苗3棵,B種樹苗5顆,需2100元,若購進(jìn)A種樹苗4顆,B種樹苗10顆,需3800元.
(1)求購進(jìn)A、B兩種樹苗的單價;
(2)若該單位準(zhǔn)備用不多于8000元的錢購進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購進(jìn)多少棵?

【答案】
(1)解:設(shè)B樹苗的單價為x元,則A樹苗的單價為y元,可得: ,

解得: ,

答:B樹苗的單價為300元,A樹苗的單價為200元


(2)解:設(shè)購買A種樹苗a棵,則B種樹苗為(30﹣a)棵,

可得:200a+300(30﹣a)≤8000,

解得:a≥10,

答:A種樹苗至少需購進(jìn)10棵


【解析】(1)設(shè)B樹苗的單價為x元,則A樹苗的單價為y元.則由等量關(guān)系列出方程組解答即可;(2)設(shè)購買A種樹苗a棵,則B種樹苗為(30﹣a)棵,然后根據(jù)總費(fèi)用和兩種樹的棵數(shù)關(guān)系列出不等式解答即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當(dāng)客車進(jìn)入B加油站時,貨車恰好進(jìn)入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點A叫做“旋補(bǔ)中心”.

(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD=BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2 ,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求△PAB的“旋補(bǔ)中線”長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:|﹣3|+( +π)0﹣(﹣ 2﹣2cos60°;
(2)先化簡,在求值:( )+ ,其中a=﹣2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=30cm,將該紙片沿過點B的直線折疊,使點A落在斜邊BC上的一點E處,折痕記為BD(如圖1),減去△CDE后得到雙層△BDE(如圖2),再沿著過△BDE某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位運(yùn)動員在相同條件下各射靶10次,每次射靶的成績?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3


(2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動員的成績最穩(wěn)定,并簡要說明理由;
(3)比賽時三人依次出場,順序由抽簽方式?jīng)Q定,求甲、乙相鄰出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知CA=CB=5,BA=6,點E是線段AB上的動點(不與端點重合),點F是線段AC上的動點,連接CE、EF,若在點E、點F的運(yùn)動過程中,始終保證∠CEF=∠B.
(1)求證:∠AEF=∠BCE;
(2)當(dāng)以點C為圓心,以CF為半徑的圓與AB相切時,求BE的長;
(3)探究:在點E、F的運(yùn)動過程中,△CEF可能為等腰三角形嗎?若能,求出BE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形,建立如圖所示的平面直角坐標(biāo)系,點C的坐標(biāo)為(0,﹣1).

(1)在如圖的方格紙中把△ABC以點O為位似中心擴(kuò)大,使放大前后的位似比為1:2,畫出△A1B2C2(△ABC與△A1B2C2在位似中心O點的兩側(cè),A,B,C的對應(yīng)點分別是A1 , B2 , C2).
(2)利用方格紙標(biāo)出△A1B2C2外接圓的圓心P,P點坐標(biāo)是 , ⊙P的半徑= . (保留根號)

查看答案和解析>>

同步練習(xí)冊答案