【題目】直線y=(3﹣π)x經過的象限是( )
A.一、二象限
B.一、三象限
C.二、三象限
D.二、四象限
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線經過點B,且頂點在直線上.
(1)求拋物線對應的函數關系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉180°,得到△MCB.
(1)求B、C兩點的坐標;
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉,到與BC重合時停止,設直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數;若變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題共10分)AB和AC 相交于點A, BD和CD相交于點D,探究∠BDC與∠B 、 ∠C、∠BAC的關系.
小明是這樣做的:
解:以點A為端點作射線AD.
∵∠1是△ABD的外角,∴∠1= ∠B+∠BAD.
同理∠2=∠C+∠CAD.
∴∠1+∠2=∠B+∠BAD+∠C+∠CAD.即∠BDC=∠B+∠C+∠BAC.
小英的思路是:延長BD交AC于點E.
(1)按小英的思路完成∠BDC=∠B+∠C+∠BAC這一結論.
(2)按照上面的思路解決如下問題:如圖:在△ABC中,BE、CD分別是∠ABC∠ACB的角平分線,交AC于E,交AB于D.BE、CD相交于點O,∠A=60°.求∠BOC的度數.
(3)如圖:△ABC中,BO、CO分別是∠ABC與∠ACB的角平分線,且BO、CO相交于點O.猜想∠BOC與∠A有怎樣的關系,并加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com