(2009•鄂州)如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點(diǎn),弦PQ交CD于E,則PE•EQ的值是( )

A.24
B.9
C.6
D.27
【答案】分析:延長DC交⊙C于M,延長CD交⊙O于N.在⊙O中,由射影定理得CD=6.在⊙O、⊙C中,由相交弦定理可知PE•EQ=DE•EM=CE•EN,設(shè)CE=x,列方程求解得CE=3.所以DE=6-3=3,EM=6+3=9,即可求得PE•EQ.
解答:解:延長DC交⊙C于M,延長CD交⊙O于N.
∵CD2=AD•DB,AD=9,BD=4,
∴CD=6.
在⊙O、⊙C中,由相交弦定理可知,PE•EQ=DE•EM=CE•EN,
設(shè)CE=x,則DE=6-x,
則(6-x)(x+6)=x(6-x+6),
解得x=3.
所以,CE=3,DE=6-3=3,EM=6+3=9.
所以PE•EQ=3×9=27.
故選D.
點(diǎn)評:此題綜合運(yùn)用了相交弦定理、垂徑定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年3月江蘇省揚(yáng)州市梅嶺中學(xué)九年級階段性回練數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•鄂州)如圖所示,將矩形OABC沿AE折疊,使點(diǎn)O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點(diǎn)且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點(diǎn),請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點(diǎn)P,試問在直線BC上是否存在點(diǎn)K,使得以P、B、K為頂點(diǎn)的三角形與△AEF相似?若存在,請求直線KP與y軸的交點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•鄂州)如圖所示,將矩形OABC沿AE折疊,使點(diǎn)O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點(diǎn)且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點(diǎn),請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點(diǎn)P,試問在直線BC上是否存在點(diǎn)K,使得以P、B、K為頂點(diǎn)的三角形與△AEF相似?若存在,請求直線KP與y軸的交點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2009•鄂州)如圖,直線AB:y=x+1分別與x軸、y軸交于點(diǎn)A,點(diǎn)B,直線CD:y=x+b分別與x軸,y軸交于點(diǎn)C,點(diǎn)D.直線AB與CD相交于點(diǎn)P,已知S△ABD=4,則點(diǎn)P的坐標(biāo)是( )

A.(3,
B.(8,5)
C.(4,3)
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市東麗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•鄂州)如圖所示,將矩形OABC沿AE折疊,使點(diǎn)O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點(diǎn)且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點(diǎn),請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點(diǎn)P,試問在直線BC上是否存在點(diǎn)K,使得以P、B、K為頂點(diǎn)的三角形與△AEF相似?若存在,請求直線KP與y軸的交點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•鄂州)如圖,直線AB:y=x+1分別與x軸、y軸交于點(diǎn)A,點(diǎn)B,直線CD:y=x+b分別與x軸,y軸交于點(diǎn)C,點(diǎn)D.直線AB與CD相交于點(diǎn)P,已知S△ABD=4,則點(diǎn)P的坐標(biāo)是( )

A.(3,
B.(8,5)
C.(4,3)
D.(

查看答案和解析>>

同步練習(xí)冊答案