【題目】小明想測量濕地公園內(nèi)某池塘兩端AB兩點(diǎn)間的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測得∠ACF40°,再向前行走100米到點(diǎn)D處,測得∠BDF52.44°,若直線ABEF之間的距離為60米,求A,B兩點(diǎn)的距離(結(jié)果精確到0.1)(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77tan40°≈0.84,sin52.44°≈0.79cos52.44°≈0.61,tan52.44°≈1.30

【答案】74.7

【解析】

根據(jù)題意作出合適的輔助線,畫出相應(yīng)的圖形,可以分別求得CMDN的長,由于ABCNCM,從而可以求得AB的長.

解:作AMEF于點(diǎn)M,作BNEF于點(diǎn)N,如圖所示,

由題意可得,AMBN60米,CD100米,∠ACF40°,∠BDF52.44°

CM71.43(米),

DN46.15(米),

ABCD+DNCM100+46.1571.43≈74.7(米),

AB兩點(diǎn)的距離是74.7米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中每個(gè)小正方形的邊長均為1,線段AB、線段EF的端點(diǎn)均在小正方形的頂點(diǎn)上.

1)在圖中以AB為邊畫RtBAC,點(diǎn)C在小正方形的頂點(diǎn)上,使∠BAC90°tanACB;

2)在(1)的條件下,在圖中畫以EF為邊且面積為3DEF,點(diǎn)D在小正方形的頂點(diǎn)上,連接CD、BD,使BDC是銳角等腰三角形,直接寫出∠DBC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店以固定進(jìn)價(jià)一次性購進(jìn)一種商品,3月份按一定售價(jià)銷售,銷售額為2400元,為擴(kuò)大銷量,減少庫存,4月份在3月份售價(jià)基礎(chǔ)上打9折銷售,結(jié)果銷售量增加30件,銷售額增加840元.

(1)求該商店3月份這種商品的售價(jià)是多少元?

(2)如果該商店3月份銷售這種商品的利潤為900元,那么該商店4月份銷售這種商品的利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直角頂點(diǎn)落在軸上,點(diǎn)在第一象限,點(diǎn)的坐標(biāo)為,點(diǎn)分別為邊的中點(diǎn),且,反比例函數(shù)的圖像恰好經(jīng)過,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰直角中,,點(diǎn)邊上一點(diǎn),以為邊作等腰直角,其中,邊交于點(diǎn),點(diǎn)上一點(diǎn).

1)如圖1,若,連接

①若,求的長度;

②求證:;

2)如圖2,若的延長線于點(diǎn),連接,請(qǐng)猜想線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對(duì)角線相交于O,給出下列 5個(gè)條件:ABCD ;ADBC;AB=CD ;④∠BAD=BCD;OA=OC.從以上5個(gè)條件中任選 2個(gè)條件為一組,能推出四邊形ABCD為平行四邊形的有(

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,對(duì)角線交于點(diǎn),折疊正方形紙片,使落在上,點(diǎn)恰好與上的點(diǎn)重合,展開后折痕分別交于點(diǎn),連給出下列結(jié)論,其中正確的個(gè)數(shù)有(  )

;②;③四邊形是菱形;④

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1,CD=2BC=m,點(diǎn)P是邊BC上一動(dòng)點(diǎn),若△PAB與△PCD相似,且滿足條件的點(diǎn)P恰有2個(gè),則m的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知C為線段AB中點(diǎn),∠ACMαQ為線段BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)P在射線CM上,連接PA,PQ,記BQkCP

1)若α60°k1,

①如圖1,當(dāng)QBC中點(diǎn)時(shí),求∠PAC的度數(shù);

②直接寫出PAPQ的數(shù)量關(guān)系;

2)如圖2,當(dāng)α45°時(shí).探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案