【題目】若am=6,an=3,則am+2n的值為

【答案】54
【解析】解:am+2n=am(an2=6×32=54,

所以答案是:54.

【考點精析】認(rèn)真審題,首先需要了解同底數(shù)冪的乘法(同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù))).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于A、B兩點,點C在OB上,若將ABC沿AC折疊,使點B恰好落在x軸上的點D處,則:

(1)線段AB的長是

(2點C的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P(-20,a)與點Q(b,13)關(guān)于原點對稱,則a+b的值為()

A. 33 B. -33 C. -7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:四邊形ABCD為平行四邊形,延長ADE,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE為矩形的是( )

A. AB=BE B. BECD C. ADB=900 D. CEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點,ABCD,連接EA,ED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1l2交于分別交于點E、FABCDa,b,cd分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域ab位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,某都市頻道媒體為此進行過專訪報道,小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息解答下列問題:

(1)求本次被抽查的居民有多少人?

(2)將圖1和圖2補充完整;

(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);

(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】口袋內(nèi)裝有一些除顏色外完全相同的紅球、白球和黑球,從中摸出一球,摸出紅球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形從一頂點出發(fā)有條對角線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多邊形的一個頂點處的所有對角線把多邊形分成了11個三角形,則經(jīng)過這一點的對角線的條數(shù)是(
A.8
B.9
C.10
D.11

查看答案和解析>>

同步練習(xí)冊答案