【題目】如圖,在正方形ABCD中,頂點(diǎn)A(﹣1,0),C(1,2),點(diǎn)F是BC的中點(diǎn),CD與y軸交于點(diǎn)E,AF與BE交于點(diǎn)G.將正方形ABCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第99次旋轉(zhuǎn)結(jié)束時(shí),點(diǎn)G的坐標(biāo)為( )
A.(,)B.(﹣,)C.(﹣,)D.(,﹣)
【答案】B
【解析】
根據(jù)正方形的性質(zhì)得到AB=BC=CD=2,∠C=∠ABF=90°,根據(jù)全等三角形的性質(zhì)得到∠BAF=∠CBE,根據(jù)余角的性質(zhì)得到∠BGF=90°,過G作GH⊥AB于H,根據(jù)相似三角形的性質(zhì)得到BH==,求得OH=,根據(jù)勾股定理得到HG==,求得G(,),找出規(guī)律即可得到結(jié)論.
∵四邊形ABCD是正方形,
∴AB=BC=CD=2,∠C=∠ABF=90°,
∵點(diǎn)F是BC的中點(diǎn),CD與y軸交于點(diǎn)E,
∴CE=BF=1,
∴△ABF≌△BCE(SAS),
∴∠BAF=∠CBE,
∵∠BAF+∠BFA=90°,
∴∠FBG+∠BFG=90°,
∴∠BGF=90°,
∴BE⊥AF,
∵AF===,
∴BG==,
過G作GH⊥AB于H,
∴∠BHG=∠AGB=90°,
∵∠HBG=∠ABG,
∴△ABG∽△GBH,
∴,
∴BG2=BHAB,
∴BH==,
∴OH=,
∵OG=AB=1,
∴HG==,
∴G(,),
∵將正方形ABCD繞點(diǎn)O順時(shí)針每次旋轉(zhuǎn)90°,
∴第一次旋轉(zhuǎn)90°后對(duì)應(yīng)的G點(diǎn)的坐標(biāo)為(,﹣),
第二次旋轉(zhuǎn)90°后對(duì)應(yīng)的G點(diǎn)的坐標(biāo)為(﹣,﹣),
第三次旋轉(zhuǎn)90°后對(duì)應(yīng)的G點(diǎn)的坐標(biāo)為(﹣,),
第四次旋轉(zhuǎn)90°后對(duì)應(yīng)的G點(diǎn)的坐標(biāo)為(,),
…,
∵99=4×24+3,
∴每4次一個(gè)循環(huán),第99次旋轉(zhuǎn)結(jié)束時(shí),相當(dāng)于正方形ABCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)3次,
∴第99次旋轉(zhuǎn)結(jié)束時(shí),點(diǎn)G的坐標(biāo)為(﹣,).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),,點(diǎn)在以為圓心,為半徑的⊙上,是的中點(diǎn),若長(zhǎng)的最大值為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知.
(1)求證:為⊙的切線;
(2)已知,填空:
①當(dāng)__________時(shí),四邊形是菱形;
②若,當(dāng)__________時(shí),為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店購(gòu)進(jìn)了足球和排球共20個(gè),一共花了1360元,進(jìn)價(jià)和售價(jià)如表:
足球 | 排球 | |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 95 | 60 |
(l)購(gòu)進(jìn)足球和排球各多少個(gè)?
(2)全部銷售完后商店共獲利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《水滸傳》《三國(guó)演義》《西游記》《紅樓夢(mèng)》(按照成書先后順序)是中國(guó)古典長(zhǎng)篇小說四大名著.
(1)小黃從這4部名著中,隨機(jī)選擇1部閱讀,求他選中《西游記》的概率.
(2)某初中擬從這4部名著中,選擇2部作為課外閱讀書籍,求《西游記》被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售A、B兩種型號(hào)的電風(fēng)扇,進(jìn)價(jià)及售價(jià)如表:
品牌 | A | B |
進(jìn)價(jià)(元/臺(tái)) | 120 | 180 |
售價(jià)(元/臺(tái)) | 150 | 240 |
(1)該商場(chǎng)4月份用21000元購(gòu)進(jìn)A、B兩種型號(hào)的電風(fēng)扇,全部售完后獲利6000元,求商場(chǎng)4月份購(gòu)進(jìn)A、B兩種型號(hào)電風(fēng)扇的數(shù)量;
(2)該商場(chǎng)5月份計(jì)劃用不超過42000元購(gòu)進(jìn)A、B兩種型號(hào)電風(fēng)扇共300臺(tái),且B種型號(hào)的電風(fēng)扇不少于50臺(tái);銷售時(shí)準(zhǔn)備A種型號(hào)的電風(fēng)扇價(jià)格不變,B種型號(hào)的電風(fēng)扇打9折銷售.那么商場(chǎng)如何進(jìn)貨才能使利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣ax2+2ax+c與x軸相交于A(﹣1,0)、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸相交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖1,求拋物線的解析式;
(2)如圖1,點(diǎn)F(0,b)在y軸上,連接AF,點(diǎn)Q是線段AF上的一個(gè)動(dòng)點(diǎn),P是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)b=﹣時(shí),求四邊形CQBP面積的最大值與點(diǎn)P的坐標(biāo);
(3)如圖2,點(diǎn)C1與點(diǎn)C關(guān)于拋物線對(duì)稱軸對(duì)稱.將拋物線y沿直線AD平移,平移后的拋物線記為y1,y1的頂點(diǎn)為D1,將拋物線y1沿x軸翻折,翻折后的拋物線記為y2,y2的頂點(diǎn)為D2.在(2)的條件下,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為P1,在平移過程中,是否存在以P1D2為腰的等腰△C1P1D2,若存在請(qǐng)直接寫出點(diǎn)D2的橫坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若有序數(shù)對(duì)(n,m)表示第n排,從左到右第m個(gè)數(shù),如(4,3)表示8,已知1+2+3+…+n=,則表示2020的有序數(shù)對(duì)是( ).
A.(64,4)B.(65,4)C.(64,61)D.(65,61)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com