若a是一個完全平方數(shù),則比a大的最小完全平方數(shù)是
 
分析:由于a是一個完全平方數(shù),則a=(
a
2.可知比a大的最小完全平方數(shù)是(
a
+1)2
解答:解:∵a是一個完全平方數(shù),
∴a的算術平方根是
a
,
∴比a的算術平方根大1的數(shù)是
a
+1,
∴這個完全平方數(shù)為:(
a
+1)2=a+2
a
+1.
故答案為:a+2
a
+1.
點評:本題考查了完全平方數(shù).解此題的關鍵是能找出與a之差最小且比a大的一個完全平方數(shù)是緊挨著自然數(shù)
a
后面的自然數(shù):(
a
+1)2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

任何一個正整數(shù)n都可以進行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=
p
q
.例如18可以分解成1×18,2×9,3×6這三種,這時就有F(18)=
3
6
=
1
2
.給出下列關于F(n)的說法:(1)F(2)=
1
2
;(2)F(24)=
3
8
;(3)F(27)=3;(4)若n是一個完全平方數(shù),則F(n)=1.其中正確說法的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

任何一個正整數(shù)n都可以寫成兩個正整數(shù)相乘的形式,我們把兩個乘數(shù)的差的絕對值最小的一種分解n=p×q(p≤q)稱為正整數(shù)n的最佳分解,并定義一個新運算F(n)=
p
q
.例如:12=1×12=2×6=3×4,則F(12)=
3
4

那么以下結論中:①F(2)=
1
2
;②F(24)=
2
3
;③若n是一個完全平方數(shù),則F(n)=1;④若n是一個完全立方數(shù)(即n=a3,a是正整數(shù)),則F(n)=
1
a
.正確的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

任何一個正整數(shù)n都可以進行這樣的分解:n=s×t(s、t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=
p
q
.例如18可以分解成1×18,2×9,3×6這三種,這時就有F(18)=
3
6
=
1
2
,給出下列關于F(n)的說法:
(1)F(2)=
1
2
;(2)F(24)=
3
8
;(3)F(n2-n)=1-
1
n
;(4)若n是一個完全平方數(shù),則F(n)=1,
其中正確說法的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

任何一個正整數(shù)n都可以進行這樣的分解:n=s×t(s、t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是最佳分解,并規(guī)定F(n)=
p
q
.例如:18可以分解成1×18,2×9,3×6,這時就有F(n)=
3
6
=
1
2
.結合以上信息,給出下列F(n)的說法:①F(2)=
1
2
;②F(24)=
3
8
;③F(27)=3;④若n是一個完全平方數(shù),則F(n)=1,其中正確的序號是(  )

查看答案和解析>>

同步練習冊答案