【題目】如圖所示,在△ABC中,∠ACB=90°,點(diǎn)D,E分別為AC,AB的中點(diǎn),點(diǎn)F在BC的延長(zhǎng)線上,且∠CDF=∠A.求證:四邊形DECF為平行四邊形.
【答案】證明:∵D,E分別為AC,AB的中點(diǎn), ∴DE為△ACB的中位線.
∴DE∥BC.
∵CE為Rt△ACB的斜邊上的中線,
∴CE= AB=AE.
∴∠A=∠ACE.
又∵∠CDF=∠A,
∴∠CDF=∠ACE.
∴DF∥CE.
又∵DE∥BC,
∴四邊形DECF為平行四邊形.
【解析】根據(jù)DE是三角形的中位線得到DE∥BC,根據(jù)CE是直角三角形斜邊上的中線得到CE=AE,得∠A=∠ACE∵∠CDF=∠A∴∠CDF=∠ACE∴DF∥CE.再根據(jù):兩組對(duì)邊分別平行的四邊形是平行四邊形而得證.
【考點(diǎn)精析】本題主要考查了三角形中位線定理和平行四邊形的判定的相關(guān)知識(shí)點(diǎn),需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a和b互為相反數(shù),且a≠0,則下列各組中,不是互為相反數(shù)的一組是( )
A. –2a3和–2b3 B. a2和b2 C. –a和–b D. 3a和3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點(diǎn)E,PN交CD于點(diǎn)F
(1)當(dāng)△PMN所放位置如圖①所示時(shí),則∠PFD與∠AEM的數(shù)量關(guān)系為;
(2)當(dāng)△PMN所放位置如圖②所示時(shí),求證:∠PFD﹣∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點(diǎn)O,且∠DON=30°,∠PEB=15°,求∠N的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)M(﹣2,1)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)N的坐標(biāo)是( )
A. (2,1) B. (1,﹣2) C. (﹣2,﹣1) D. (2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(棗莊)
已知:在直角坐標(biāo)平面內(nèi),△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度)
(1) 在備用圖(1)中,畫(huà)出△ABC向下平移4個(gè)單位長(zhǎng)度得到△ABC,點(diǎn)C的坐標(biāo)是________.
(2) 在備用圖(2)中,以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△ABC,使△ABC與△ABC位似,且位似比為2︰1,點(diǎn)C的坐標(biāo)是________.
(3) △ABC的面積是________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是 , 證明你的結(jié)論;
(2)當(dāng)四邊形ABCD的對(duì)角線滿足條件時(shí),四邊形EFGH是矩形;
(3)你學(xué)過(guò)的哪種特殊四邊形的中點(diǎn)四邊形是矩形? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)下列3×3網(wǎng)格都是由9個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?個(gè)空白小正方形中,按下列要求涂上陰影:
(1)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對(duì)稱(chēng)圖形,但不是中心對(duì)稱(chēng)圖形;
(2)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱(chēng)圖形,但不是軸對(duì)稱(chēng)圖形;
(3)選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對(duì)稱(chēng)圖形。
(請(qǐng)將三個(gè)小題依次作答在圖1、圖2、圖3中,均只需畫(huà)出符合條件的一種情形)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com