【題目】下列說法中正確的個數(shù)是( )

是完全平方式,則k=3

工程建筑中經(jīng)常采用三角形的結(jié)構(gòu),這是利用三角形具有穩(wěn)定性的性質(zhì)

在三角形內(nèi)部到三邊距離相等的點是三個內(nèi)角平分線的交點

當(dāng)

若點P∠AOB內(nèi)部,D,E分別在∠AOB的兩條邊上,PD=PE,則點P∠AOB的平分線上

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)完全平方公式、三角形的穩(wěn)定性、內(nèi)心的性質(zhì)、零指數(shù)冪的運算及角平分線的判定定理即可求解.

是完全平方式,則k=±3,故錯誤;

工程建筑中經(jīng)常采用三角形的結(jié)構(gòu),這是利用三角形具有穩(wěn)定性的性質(zhì),正確;

在三角形內(nèi)部到三邊距離相等的點是三個內(nèi)角平分線的交點,正確;

當(dāng),正確;

若點P∠AOB內(nèi)部,D,E分別在∠AOB的兩條邊上, PD=PE,P不一定在∠AOB的平分線上,故錯誤;

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點E,交DC的延長線于點F,BGAE于G,BG=,則梯形AECD的周長為( )

A.22 B.23 C.24 D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=AGE,∠D=DGC

1)求證:ABCD

2)若∠1+2=180°,求證:∠BEC+B=180°

3)在(2)的基礎(chǔ)上,若∠BEC=2B+30°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為等邊三角形,AE=CD,ADBE于點PBQADQ.

1)求證:AD=BE;

2)設(shè)∠BPQ=α,那么α的大小是否隨D、E的位置變化而變化?請說明理由;

3)若PQ=3PE=1,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標(biāo);

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點M是x軸上的一個動點,當(dāng)△DCM的周長最小時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC的面積為1cm2AP垂直∠B的平分線BPP.則與三角形PBC的面積相等的長方形是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(a,0),C(0c)且滿足:(a+6)2+0,長方形ABCO在坐標(biāo)系中(如圖),點O為坐標(biāo)系的原點.

(1)求點B的坐標(biāo).

(2)如圖1,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點O),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設(shè)M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

(3)如圖2Ex軸負(fù)半軸上一點,且∠CBE=∠CEBFx軸正半軸上一動點,∠ECF的平分線CDBE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,的平分線與的平分線交于點,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1

(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案