【題目】如圖所示,已知點(diǎn)C(1,0),直線與兩坐標(biāo)軸分別交于A,B兩點(diǎn),D,E分別是線段AB,OA上的動(dòng)點(diǎn),則△CDE的周長的最小值是( )
A.B.10
C.D.12
【答案】B
【解析】
點(diǎn)C關(guān)于OA的對(duì)稱點(diǎn)C′(-1,0),點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)C″(7,6),連接C′C″與AO交于點(diǎn)E,與AB交于點(diǎn)D,此時(shí)△DEC周長最小,可以證明這個(gè)最小值就是線段C′C″.
解:如圖,點(diǎn)C(1,0)關(guān)于y軸的對(duì)稱點(diǎn)C′(-1,0),點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)C″,
∵直線AB的解析式為y=-x+7,
∴直線CC″的解析式為y=x-1,
由
解得,
∴直線AB與直線CC″的交點(diǎn)坐標(biāo)為K(4,3),
∵K是CC″中點(diǎn),C(1,0),
設(shè)C″坐標(biāo)為(m,n),
∴,解得:
∴C″(7,6).
連接C′C″與AO交于點(diǎn)E,與AB交于點(diǎn)D,此時(shí)△DEC周長最小,
△DEC的周長=DE+EC+CD=EC′+ED+DC″=C′C″=
故答案為:10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假設(shè),企業(yè)還貸款,應(yīng)每年一還,還本息,若第一年沒還,則第一年的本息作為第二年的貸款本金計(jì)算. 華泰公司和宜興公司是分別擁有96名和100名工人的小型企業(yè),為了緩解下崗人員再就業(yè)的社會(huì)問題, 兩企業(yè)2017年1月都吸收了部分下崗人員,國家對(duì)吸收下崗人員的企業(yè)貸款給予優(yōu)惠,同時(shí)按季度(一年四個(gè)季度)給予企業(yè)補(bǔ)助,每季度補(bǔ)助費(fèi)為:貸款總數(shù)×(吸收再就業(yè)人數(shù)÷企業(yè)原有人數(shù))÷25 ,按兩年計(jì)。華泰公司吸收了12名下崗人員,得到兩年期的貸款和補(bǔ)助費(fèi)共62.4萬元資金,宜興公司也吸收了12名下崗人員,但因貸款少,得到的補(bǔ)助費(fèi)比華泰公司的少20%,。
(1)2017年1月華泰公司得到的貸款是多少萬元?
(2)2017年1月宜興公司得到的貸款是多少萬元?
(3)假設(shè)兩公司第一年都沒還一分錢貸款和利息,而是兩年后2019年1月才還, 宜興公司歸還貸款及利息比華泰公司少12.1萬元,求國家對(duì)吸收下崗人員的企業(yè)貸款年利率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F,交AB的延長線于點(diǎn)G.
(1)求證:DF是⊙O的切線;
(2)已知BD=2,CF=2,求AE和BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABOC的AB,AC分別與⊙O相切于點(diǎn)D、E,若點(diǎn)D是AB的中點(diǎn),則∠DOE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(2,0),B(0,2),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是拋物線y=﹣x2+bx+c在第一象限上的點(diǎn),過點(diǎn)P分別向x軸、y軸作垂線,垂足分別為D,E,求四邊形ODPE的周長的最大值;
(3)如圖2,點(diǎn)P是拋物線y=﹣x2+bx+c在第一象限上的點(diǎn),過點(diǎn)P作PN⊥x軸,垂足為N,交AB于M,連接PB,PA.設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng)△ABP的面積等于△ABC面積的時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(4,3).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.
(2)直接寫出該拋物線開口方向和頂點(diǎn)坐標(biāo).
(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com