精英家教網 > 初中數學 > 題目詳情
已知△ABC中,AB=12cm,BC=10cm,AC=8cm,D、E、F分別為AB、BC、AC邊上的中點,則△DEF的周長為    cm.
【答案】分析:D、E、F分別為AB、BC、AC邊上的中點,則EF,F(xiàn)D,DE是△ABC的中位線,根據三角形中位線定理求解即可.
解答:解:如圖;
∵E、F分別是BC、AC的中點,
∴EF是△ABC的中位線;
∴EF=AB=6cm;
同理,可得:DE=AC=4cm,DF=BC=5cm;
故△DEF的周長是:4+5+6=15cm.
故答案為15.
點評:此題考查的是三角形中位線的性質,即三角形的中位線平行于第三邊且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC中,AB=AC,AD平分∠BAC,請補充完整過程證明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分線的定義).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知△ABC中,AB=AC,AD為BC邊上的中線,BE為AC邊上的高,
(1)在圖中作出中線AD(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法與證明);
(2)設AD,BE交于點F,若∠ABC=70°,求∠DFB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC中,AB=20,AC=15,BC邊上的高為12,則△ABC的周長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ABC中,AB=AC,AD平分∠BAC,請補充完整過程,說明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分線的定義)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:已知△ABC中,AB=17cm,BC=30cm,BC邊上的中線AD=8cm.求證:△ABC是等腰三角形.

查看答案和解析>>

同步練習冊答案