【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和4,∠A=120°.則陰影部分面積是 . (結果保留根號)

【答案】
【解析】解:如圖,設BF交CE于點H,
∵菱形ECGF的邊CE∥GF,
∴△BCH∽△BGF,
,
,
解得CH=
所以,DH=CD﹣CH=2﹣ ,
∵∠A=120°,
∴∠ECG=∠ABC=180°﹣120°=60°,
∴點B到CD的距離為2× ,
點G到CE的距離為4× ,
∴陰影部分的面積=SBDH+SFDH ,
= ,
=
故答案為:
設BF交CE于點H,根據(jù)菱形的對邊平行,利用相似三角形對應邊成比例列式求出CH,然后求出DH,根據(jù)菱形鄰角互補求出∠ABC=60°,再求出點B到CD的距離以及點G到CE的距離;然后根據(jù)陰影部分的面積=SBDH+SFDH , 根據(jù)三角形的面積公式列式進行計算即可得解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請在圖中標明旋轉中心P的位置并寫出其坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線,點為平面上一點,連接

1)如圖1,點在直線、之間,當,時,求

2)如圖2,點在直線之間左側,的角平分線相交于點,寫出之間的數(shù)量關系,并說明理由.

3)如圖3,點落在下方,的角平分線相交于點,有何數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,左右兩幅圖案關于y軸對稱右圖案中的左右眼睛的坐標分別是(2,3),(4,3),嘴角左右端點的坐標分別是(21),(41)

(1)試確定左圖案中的左右眼睛和嘴角左右端點的坐標;

(2)從對稱的角度來考慮說一說你是怎樣得到的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點O,P是BC邊中點,AP交BD于點Q.則 的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店甲、乙兩種商品三天銷售情況的賬目記錄如下表:

日期

賣出甲商品的數(shù)量(個)

賣出乙商品的數(shù)量(個)

收入(元)

第一天

39

21

321

第二天

26

14

204

第三天

39

25

345

(1)財務主管在核查時發(fā)現(xiàn):第一天的賬目正確,但其他兩天的賬目有一天有誤,請你判斷第幾天的賬目有誤,并說明理由;

(2)求甲、乙兩種商品的單價.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分如圖,ABCD中,點E,F(xiàn)在直線AC上點E在F左側,BEDF.

1求證:四邊形BEDF是平行四邊形;

2若ABAC,AB=4,BC=,當四邊形BEDF為矩形時,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。

(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?

(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由

查看答案和解析>>

同步練習冊答案