【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點(diǎn)G,連接AG,那么∠AGD的底數(shù)是______度.

【答案】60

【解析】

根據(jù)已知可求得∠BEC的度數(shù),根據(jù)三角形外角定理可求得∠AGD的度數(shù).

解:∵四邊形ABCD是正方形,

ABBCADCD,∠ABC90°,∠ADG=∠CDG,∠ABD45°,

GDGD,

∴△ADG≌△CDG,

∴∠AGD=∠CGD

∵∠CGD=∠EGB,

∴∠AGD=∠EGB,

∵△ABE是等邊三角形,

ABBE,∠ABE60°,

BEBC,∠EBC150°,

∴∠BEC=∠ECB15°,

∴∠BGE180°﹣∠BEC﹣∠EBG180°﹣15°﹣60°﹣45°=60°,

∴∠AGD60°

故答案為60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x24x的圖象與x軸、直線y=x的一個(gè)交點(diǎn)分別為點(diǎn)A、B,CD是線段OB上的一動(dòng)線段,且CD=2,過(guò)點(diǎn)CD的兩直線都平行于y軸,與拋物線相交于點(diǎn)F、E,連接EF

1)點(diǎn)A的坐標(biāo)為   ,線段OB的長(zhǎng)=   ;

2)設(shè)點(diǎn)C的橫坐標(biāo)為m

當(dāng)四邊形CDEF是平行四邊形時(shí),求m的值;

連接AC、AD,求m為何值時(shí),ACD的周長(zhǎng)最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)AB在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點(diǎn)C恰落在雙曲線y=(x>0)上,此時(shí)□OABC的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一帶一路的戰(zhàn)略構(gòu)想為國(guó)內(nèi)許多企業(yè)的發(fā)展帶來(lái)了新的機(jī)遇,某公司生產(chǎn)AB兩種機(jī)械設(shè)備,每臺(tái)B種設(shè)備的成本是A種設(shè)備的1.5倍,公司若投入16萬(wàn)元生產(chǎn)A種設(shè)備,36萬(wàn)元生產(chǎn)B種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺(tái).請(qǐng)解答下列問(wèn)題:

(1)A、B兩種設(shè)備每臺(tái)的成本分別是多少萬(wàn)元?

(2)A,B兩種設(shè)備每臺(tái)的售價(jià)分別是6萬(wàn)元,10萬(wàn)元,公司決定生產(chǎn)兩種設(shè)備共60臺(tái),計(jì)劃銷(xiāo)售后獲利不低于126萬(wàn)元,且A種設(shè)備至少生產(chǎn)53臺(tái),求該公司有幾種生產(chǎn)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ABM=30°,AB=20,C是射線BM上一點(diǎn).

(1)在下列條件中,可以唯一確定BC長(zhǎng)的是 ;(填寫(xiě)所有符合條件的序號(hào))

AC=13;tanACB;③△ABC的面積為126.

(2)在(1)的答案中,選擇一個(gè)作為條件,畫(huà)出示意圖,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在半徑等于5cm的圓內(nèi)有長(zhǎng)為5cm的弦,則此弦所對(duì)的圓周角為(

A.120° B.30°或120°

C.60° D.60°或120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C、D在圓O上,且AD平分∠CAB.過(guò)點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于E,與AB的延長(zhǎng)線相交于點(diǎn)F.

求證:EF與圓O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑作OBC于點(diǎn)D,過(guò)點(diǎn)DO的切線EF,交ABAC的延長(zhǎng)線于E、F

1)求證:FEAB;

2)當(dāng)AE6sinCFD時(shí),求EB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案