【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為10,點(diǎn)B在點(diǎn)A左邊,且AB=18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù),點(diǎn)P表示的數(shù)(用含t的代數(shù)式表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).
①問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?
②問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)與點(diǎn)Q相距4個(gè)單位長度?并求出此時(shí)點(diǎn)P表示的數(shù);
(3)若點(diǎn)P、Q以(2)中的速度同時(shí)分別從點(diǎn)A、B向右運(yùn)動(dòng),同時(shí)點(diǎn)R從原點(diǎn)O以每秒7個(gè)單位的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得2QR+3OP﹣mOR為定值,若存在請(qǐng)求出m值以及這個(gè)定值;若不存在,請(qǐng)說明理由.
【答案】(1)﹣8; 10﹣5t;(2)①9秒;②7秒或11秒;-25或-45;(3).
【解析】
(1)根據(jù)兩點(diǎn)間的距離公式,以及路程=速度 時(shí)間即可求解;
(2)①根據(jù)時(shí)間=路程差速度差,列出算式計(jì)算即可求解;
②分兩種情況:相遇前相距4個(gè)單位長度;相遇后相距4個(gè)單位長度;進(jìn)行討論可求點(diǎn)P表示的數(shù);
(3) 設(shè)t秒后2QR+3OP﹣mOR為定值,列方程求解即可.
解:(1)數(shù)軸上點(diǎn)B表示的數(shù)為10﹣18=﹣8,點(diǎn)P表示的數(shù)為10﹣5t;
(2)①18÷(5﹣3)=9(秒).
故點(diǎn)P運(yùn)動(dòng)9秒時(shí)追上點(diǎn)Q;
②相遇前相距4個(gè)單位長度,
(18﹣4)÷(5﹣3)=7(秒),
10﹣7×5=﹣25,
則點(diǎn)P表示的數(shù)為﹣25;
相遇后相距4個(gè)單位長度,
(18+4)÷(5﹣3)=11(秒),
10﹣11×5=﹣45,
則點(diǎn)P表示的數(shù)為﹣45;
(3)設(shè)t秒后2QR+3OP﹣mOR為定值,
由題意得,2QR+3OP﹣mOR=2×[7t﹣(3t﹣8)]+3(10+5t)﹣7mt=(23﹣7m)t+46,
∴當(dāng)m=時(shí),2QR+3OP﹣mOR為定值46.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.過一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長的數(shù)值與面積的數(shù)值相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如.圖中過點(diǎn)P分別作x軸,y軸的垂線.與坐標(biāo)軸圍成矩形OAPB的周長的數(shù)值與面積的數(shù)值相等,則點(diǎn)P是和諧點(diǎn).
(1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說明理由;
(2)若和諧點(diǎn)P(a,3)在直線y=﹣x+b(b為常數(shù))上,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)的圖象交于點(diǎn)A(-2,6)、點(diǎn)B(,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
(3)將一次函數(shù)的圖象沿軸向下平移n個(gè)單位,使平移后的圖象與反比例函數(shù)的圖象有且只有一個(gè)交點(diǎn),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠EOC=110°,將角的一邊OE繞點(diǎn)O旋轉(zhuǎn),使終止位置OD和起始位置OE成一條直線,以點(diǎn)O為中心將OC順時(shí)針旋轉(zhuǎn)到OA,使∠COA=∠DOC,過點(diǎn)O作∠COA的平分線OB.
(1)借助量角器、直尺補(bǔ)全圖形;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用網(wǎng)格畫圖:
(1)過點(diǎn)C畫AB的平行線;
(2)過點(diǎn)C畫AB的垂線,垂足為E;
(3)連接CA、CB,在線段CA、CB、CE中, 線段最短,理由: ;
(4)點(diǎn)C到直線AB的距離是線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在春運(yùn)期間,寧波火車站加大了安檢力度,原來在北廣場(chǎng)執(zhí)勤的有10人,在南廣場(chǎng)執(zhí)勤的有6人,現(xiàn)調(diào)50人去支援.設(shè)調(diào)往北廣場(chǎng)x人.
(1)則南廣場(chǎng)增援后有執(zhí)勤多少人(用含x的代數(shù)式表示).
(2)若要使在北廣場(chǎng)執(zhí)勤人數(shù)是在南廣場(chǎng)執(zhí)勤人數(shù)的2倍,問應(yīng)調(diào)往北廣場(chǎng)、南廣場(chǎng)兩處各多少人?
(3)通過適當(dāng)?shù)恼{(diào)配支援人數(shù),使在北廣場(chǎng)執(zhí)勤人數(shù)恰好是在南廣場(chǎng)執(zhí)勤人數(shù)的n倍(n是大于1的正整數(shù),不包括1).求符合條件的n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,以O(shè)B為直徑畫圓M,過D作⊙M的切線,切點(diǎn)為N,分別交AC、BC于點(diǎn)E、F,已知AE=5,CE=3,則DF的長是( )
A.3
B.4
C.4.8
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1在平面直角坐標(biāo)系中,直線l1與y軸交于點(diǎn)A,點(diǎn)B(-3,3)也在直線l1上,將點(diǎn)B先向右平移1個(gè)單位長度,再向下平移2個(gè)單位長度得到點(diǎn)C,點(diǎn)C恰好也在直線l1上.
(1)求點(diǎn)C的坐標(biāo)和直線l1的解析式;
(2)已知直線l2:y=x+b經(jīng)過點(diǎn)B,與y軸交于點(diǎn)E,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在長方形ABCD中,點(diǎn)P是CD中點(diǎn),點(diǎn)Q從點(diǎn)A開始,沿著A→B→C→P的路線勻速運(yùn)動(dòng),設(shè)△APQ的面積是y,點(diǎn)Q經(jīng)過的路線長度為x,圖2坐標(biāo)系中折線OEFG表示y與x之間的函數(shù)關(guān)系,點(diǎn)E的坐標(biāo)為(4,6),則點(diǎn)G的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com