【題目】計(jì)算下列各式:
(1)1﹣
(2)(1﹣ )(1﹣ )
(3)(1﹣ )(1﹣ )(1﹣ )
(4)請(qǐng)你根據(jù)上面算式所得的簡(jiǎn)便方法計(jì)算下式:
(1﹣ )(1﹣ )(1﹣ )…(1﹣ )(1﹣ )…(1﹣ )
【答案】
(1)解:1﹣ =
(2)解:(1﹣ )(1﹣ )=
(3)解:原式=
(4)解:原式= … =
【解析】對(duì)于(1)、(2)、(3),先依據(jù)平方差公式進(jìn)行分解因式,然后再依據(jù)乘法法則進(jìn)行計(jì)算即可;對(duì)于(4),據(jù)平方差公式進(jìn)行分解因式,然后再依據(jù)乘法法則進(jìn)行計(jì)算,注意確定好約分時(shí),哪些項(xiàng)可約分.
【考點(diǎn)精析】本題主要考查了平方差公式的相關(guān)知識(shí)點(diǎn),需要掌握兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差.積化和差變兩項(xiàng),完全平方不是它才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)邊長(zhǎng)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)A,C分別在邊長(zhǎng)為1的正六邊形一組平行的對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年下半年開(kāi)始,不同品牌的共享單車出現(xiàn)在城市的大街小巷.現(xiàn)已知A品牌共享單車計(jì)費(fèi)方式為:初始騎行單價(jià)為1元/半小時(shí),不足半小時(shí)按半小時(shí)計(jì)算.內(nèi)設(shè)邀請(qǐng)機(jī)制,每邀請(qǐng)一位好友注冊(cè)認(rèn)證并充值押金成功,雙方騎行單價(jià)均降價(jià)0.1元/半小時(shí),騎行單價(jià)最低可降至0.1元/半小時(shí)(比如,某用戶邀請(qǐng)了3位好友,則騎行單價(jià)為0.7元/半小時(shí)).B品牌共享單車計(jì)費(fèi)方式為:0.5元/半小時(shí),不足半小時(shí)按半小時(shí)計(jì)算.
(1)某用戶準(zhǔn)備選擇A品牌共享單車使用,設(shè)該用戶邀請(qǐng)好友x名(x為整數(shù),x≥0),該用戶的騎行單價(jià)為y元/半小時(shí).請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)解析式.
(2)若有A,B兩種品牌的共享單車各一輛供某用戶一人選擇使用,請(qǐng)你根據(jù)該用戶已邀請(qǐng)好友的人數(shù),給出經(jīng)濟(jì)實(shí)惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內(nèi)部)經(jīng)過(guò)B、C兩點(diǎn),交AB于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)F.延長(zhǎng)CO交AB于點(diǎn)G,作ED∥AC交CG于點(diǎn)D
(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,邊長(zhǎng)為4,點(diǎn)G在邊BC上運(yùn)動(dòng),DE⊥AG于E,BF∥DE交AG于點(diǎn)F,在運(yùn)動(dòng)過(guò)程中存在BF+EF的最小值,則這個(gè)最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對(duì)稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com