【題目】如圖,把菱形ABCD沿AH折疊,B落在BC上的點E處,若∠BAE40°,則∠EDC的大小為_____

【答案】15°

【解析】

根據(jù)翻折變換的性質(zhì)可得ABAE,然后根據(jù)等腰三角形兩底角相等求出∠B=∠AEB70°,根據(jù)菱形的四條邊都相等可得ABAD,菱形的對角相等求出∠ADC,再求出∠DAE,然后根據(jù)等腰三角形兩底角相等求出∠ADE,然后根據(jù)∠EDC=∠ADC﹣∠ADE計算即可得解.

∵菱形ABCD沿AH折疊,B落在BC邊上的點E處,

ABAE,

∵∠BAE40°,

∴∠B=∠AEB180°40°)=70°,

在菱形ABCD中,ABAD,∠ADC=∠B70°

ADBC,

∴∠DAE=∠AEB70°

ABAE,ABAD,

AEAD,

∴∠ADE180°﹣∠DAE)=180°70°)=55°,

∴∠EDC=∠ADC﹣∠ADE70°55°15°

故答案為:15°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校就遇見路人摔倒后如何處理的問題,隨機抽取該校部分學(xué)生進行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中提供的信息,解答下列問題:

(1)該校隨機抽查了 名學(xué)生?請將圖1補充完整;

(2)在圖2中,視情況而定部分所占的圓心角是 度;

(3)在這次調(diào)查中,甲、乙、丙、丁四名學(xué)生都選擇馬上救助,現(xiàn)準(zhǔn)備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某小型汽車的側(cè)面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點A逆時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為60°時,箱蓋ADE落在ADE的位置(如圖2所示).已知AD96厘米,DE28厘米,EC42厘米.

1)求點DBC的距離;

2)求E、E兩點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=4x+4x軸、y軸分別交于點AB,拋物線y=ax2+bx-3a經(jīng)過點A,將點B向右平移5個單位長度得到點C.若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,a的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(0,1)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.

1)求拋物線的函數(shù)表達式;

2)如圖1,若點D在直線AB上方的拋物線上,求DAB的面積最大時點D的坐標(biāo);

3)如圖2,若點D在對稱軸左側(cè)的拋物線上,且點E1,t)是射線CF上一點,當(dāng)以CB、D為頂點的三角形與CAE相似時,求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,BCO上的定點.連接AB,ACMAB上的一個動點,連接CM,將射線MC繞點M順時針旋轉(zhuǎn)90°,交O于點D,連接BD.若AB6cm,AC2cm,記A,M兩點間距離為xcm,B,D兩點間的距離為ycm

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小東探究的過程,請補充完整:

1)通過取點、畫圖、測量,得到了xy的幾組值,如下表,補全表格:

x/cm

0

0.25

0.47

1

2

3

4

5

6

y/cm

1.43

0.66

0

1.31

2.59

2.76

   

1.66

0

2)在平面直角坐標(biāo)系xOy中,描出補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BDAC時,AM的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形AOBC的頂點O在原點,邊AO,BO分別在x軸和y軸上,點C坐標(biāo)為(4,4),點DBO的中點,點P是邊OA上的一個動點,連接PD,以P為圓心,PD為半徑作圓,設(shè)點P橫坐標(biāo)為t,當(dāng)⊙P與正方形AOBC的邊相切時,t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,以點M(1,0)為圓心的圓與y軸,x軸分別交于點A,B,C,D,與⊙M相切于點H的直線EFx軸于點E,0),交y軸于點F0).

(1)⊙M的半徑r;

(2)如圖2所示,連接CH,弦HQx軸于點P,若cos∠QHC=,求的值;

(3)如圖3所示,點P⊙M上的一個動點,連接PE,PF,求PF+PE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】縉云山是國家級自然風(fēng)景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點處,再沿著坡度為的斜坡走一段距離到達點,此時回望觀景塔,更顯氣勢宏偉,在點觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案