如圖,將拋物線y=-
1
2
(x-1)2+
9
2
與x軸交于A、B,點C(2,m)在拋物線上,點P在y軸的正半軸上,且△BCP為等腰三角形,求點P的坐標.
分析:將C坐標代入拋物線解析式求出m的值,確定出點C坐標;然后分類討論:BC為底和BC為腰兩種情況下的點P的坐標.
解答:解:令y=0,則-
1
2
(x-1)2+
9
2
=0,
解得,x=4或x=-2.
如圖所示,A(-2,0),B(4,0).
把C(2,m)代入拋物線解析式,得到:m=-
1
2
(2-1)2+
9
2
=4,則C(2,4).
∴BC=
(4-2)2+42
=2
5

∵P在y軸的正半軸上,∴設(shè)P(0,y)(y>0).
①當BC=PC時,
(-2)2+(y-4)2
=2
5

解得,y=8或y=0(都不合題意,舍去),
②當BC=PB時,
(0-4)2+y2
=2
5
,
解得,y=2或y=-2(不合題意,舍去).
則P(0,2);
③當PC=PB時,
(-2)2+(y-4)2
=
(0-4)2+y2
,解得,y=
1
2
.則P(0,
1
2
).
綜上所述,符合題意的點P的坐標是:(0,2),(0,
1
2
).
點評:本題考查了拋物線與x軸的交點.解題時,要根據(jù)等腰三角形的性質(zhì),進行分類討論,以防漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,將拋物線y=x2沿x軸正方向平移3個單位得到拋物線l,直線y=-2.
(1)求拋物線l的解析式;
(2)點A是拋物線l上一點,點B是直線y=-2上一點,是否存在等腰△OAB?若存在,求點A,B兩點的坐標;若不存在,說明理由;
(3)若將上題中的“沿x軸正方向平移3個單位”改為“沿x軸正方向平移n個單位”,其它條件不變,探究上題(2)中的問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過原點O和點A(6,0),平移后的拋物線的頂點為點B,對稱軸與拋物線y=-
1
2
x2
相交于點C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為
27
2
27
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

拋物線y=ax2+bx+c過點A(-1,0)點B(3,0),其開口向上,點C是拋物線與y軸的交點,且OC=3OA.
(1)求拋物線的解析式;
(2)如圖①,將拋物線x軸下方的部分沿x軸對折交y軸于點C,若直線y=-x+b與翻折后的曲線的交點數(shù)為兩個,求b的取值范圍;
(3)如圖②,過點B作BD⊥x軸,交AC的延長線于點D,設(shè)點C的上方有一點P(0,t),且△PAD的面積為15,若將拋物線沿其對稱軸上下平移,使拋物線與△PAD總有公共點,則拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)已知拋物線的頂點為(0,4)且與x軸交于(-2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案