【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點A在△ECD的斜邊DE上,
求證:
【答案】證明見解析.
【解析】試題分析:連結(jié)BD,根據(jù)等邊三角形的性質(zhì)就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性質(zhì)就可以得出∠ADB=90°,由勾股定理就可以得出結(jié)論.
試題解析:證明:連結(jié)BD,
∵△ACB與△ECD都是等腰直角三角形,
∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,
EC=DC,AC=BC,AC2+BC2=AB2,
∴2AC2=AB2.∠ECD-ACD=∠ACB-∠ACD,
∴∠ACE=∠BCD.
在△AEC和△BDC中,
,
∴△AEC≌△BDC(SAS).
∴AE=BD,∠E=∠BDC.
∴∠BDC=45°,
∴∠BDC+∠ADC=90°,
即∠ADB=90°.
∴AD2+BD2=AB2,
∴AD2+AE2=2AC2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用三塊正多邊形的木塊鋪地,拼在一起后,相交于一點的各邊完全吻合,設(shè)其邊數(shù)為4,6,m , 則m的值是( 。
A.3
B.5
C.8
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點,點A(﹣1,0),點B(0,).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點O順時針得△A′OB′,當(dāng)A′恰好落在AB邊上時,設(shè)△AB′O的面積為S1,△BA′O的面積為S2,S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E在△ABC的邊BC上,連 接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設(shè),另一個作為命題的結(jié)論,構(gòu)成三個命題:①②③:①③②;②③①.
(1)以上三個命題是真命題的為(直接作答) ;
(2)請選擇一個真命題進(jìn)行證明(先寫出所選命題,然后證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實踐課上.五名同學(xué)做的作品的數(shù)量(單位:件)分別是:5,7,3,6,4,則這組數(shù)據(jù)的中位數(shù)是 件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B(3,﹣2)在平面直角坐標(biāo)系中,按要求完成下列個小題.
(1)寫出與點A關(guān)于y軸對稱的點C的坐標(biāo),并在圖中描出點C;
(2)在(1)的基礎(chǔ)上,點B,C表示的是兩個村莊,直線a表示河流,現(xiàn)要在河流a上的某點M處修建一個水泵站,向B、C兩個村莊供水,并且使得管道BM+CM的長度最短,請你在圖中畫出水泵站M的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+m的圖象和y軸交于點B,與正比例函數(shù)y=x圖象交于點P (2,n).
(1)求m和n的值;
(2)求△POB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點 F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com