【題目】如圖,已知拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn),若已知點(diǎn)的坐標(biāo)為.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點(diǎn),使的周長最小,求出點(diǎn)的坐標(biāo);
(3)在第一象限的拋物線上是否存在點(diǎn),使的面積最大?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)存在點(diǎn),使的面積最大.
【解析】
(1)將點(diǎn)代入拋物線的解析式求出b即可;
(2)由A、B關(guān)于對稱軸對稱可知,連接BC交對稱軸于點(diǎn),點(diǎn)即為所求,求出直線BC的解析式,代入x=3即可得到點(diǎn)的坐標(biāo);
(3)設(shè),連接、CM、BM,根據(jù)列出函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求解即可.
解:(1)∵拋物線過點(diǎn),
∴,
解得:,
∴拋物線的解析式為:;
(2)由得:,
∴,
又∵拋物線對稱軸為:,點(diǎn)A關(guān)于對稱的點(diǎn)為,
∴連接BC交于點(diǎn),點(diǎn)即為所求,
設(shè)直線BC解析式為:,
代入,得:,解得:,
∴直線BC解析式為:,
當(dāng)時,,
∴;
(3)設(shè),則,
連接、CM、BM,
則:,
,
,
,
,
∴當(dāng)時,的面積最大,此時,
故存在點(diǎn),使的面積最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,AD=4,M點(diǎn)是BC的中點(diǎn),A為圓心,AB為半徑的圓交AD于點(diǎn)E.點(diǎn)P在弧BE上運(yùn)動,則PM+DP的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線,將△DCB繞著點(diǎn)D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG,則下列結(jié)論:①DE平分∠ADB;②BE=2-;③四邊形AEGF是菱形;④BC+FG=1.5.其中結(jié)論正確的序號是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( 。
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A、D分別在x軸、y軸上,∠ADO=30°,OA=2,反比例函y=經(jīng)過CD的中點(diǎn)M,那么k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈,求兩盞景觀燈之間的水平距離(提示:請建立平面直角坐標(biāo)系后,再作答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);
(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時,點(diǎn)M、N同時停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出方程kx+b﹣=0的解;
(3)求△AOB的面積;
(4)觀察圖象,直接寫出不等式kx+b﹣<0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com