【題目】拋物線y=ax2+bx+c交x軸于A(-1,0),B(3,0),交y軸的負(fù)半軸于C,頂點為D.下列結(jié)論:①a-b+c=0;②2c<3b;③當(dāng)m≠1時,a+b<am2+bm;④當(dāng)△ABD是等腰直角三角形時,a=;其中正確的有( )
A.①②③B.①②④C.②③④D.①③④
【答案】D
【解析】
根據(jù)二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)與x軸交于點A(1,0)、B(3,0),可得對稱軸x=1,將A、B兩點代入可得a-b+c=0及c、b的關(guān)系;函數(shù)開口向下,x=1時取得最小值,則m≠1,可判斷③;根據(jù)圖象AD=BD,頂點坐標(biāo),判斷④.
①∵二次函數(shù)y=ax2+bx+c與x軸交于點A(1,0)、B(3,0).
∴ab+c=0,9a+3b+c=0,故①正確
又∵二次函數(shù)的對稱軸為x==1=- ,
∴b=2a.
∴3b=6a,a(2a)+c=0.
∴3b=6a,2c=6a.
∴2c=3b.
故②錯誤;
③ ∵拋物線開口向上,對稱軸是x=1.
∴x=1時,二次函數(shù)有最小值.
∴m≠1時,a+b+c<am2+bm+c.
即a+b<am2+bm.
故③正確;
④∵AD=BD,AB=4,△ABD是等腰直角三角形.
∴AD2+BD2=42.
解得,AD2=8.
設(shè)點D坐標(biāo)為(1,y).
則[1(1)]2+y2=AD2.
解得y=±2.
∵點D在x軸下方.
∴點D為(1,2).
∵二次函數(shù)的頂點D為(1,2),過點A(1,0).
設(shè)二次函數(shù)解析式為y=a(x1)22.
∴0=a(11)22.
解得a=.
故④正確;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,取邊上一點,連結(jié),是延長線上一點,連結(jié)并延長,交延長線于點.
(1)如圖1,若,,,求的長;
(2)如圖2,連結(jié),過點作交延長線于點,且.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,點E是AB的中點,AF⊥BC于點F,聯(lián)結(jié)EF、ED、DF,DE交AF于點G,且AE2=EGED.
(1)求證:DE⊥EF;
(2)求證:BC2=2DFBF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點P(3,4),連接OP,將線段OP繞點O逆時針旋轉(zhuǎn)90°得線段OP1.
(1)在圖中作出線段OP1,并寫出P1點的坐標(biāo);
(2)求點P在旋轉(zhuǎn)過程中所繞過的路徑長;
(3)求線段OP在旋轉(zhuǎn)過程中所掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日王老師佩戴運動手環(huán)進行快走鍛煉,兩次鍛煉后數(shù)據(jù)如下表.與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的3倍.設(shè)王老師第二次鍛煉時平均步長減少的百分率為x(0<x<0.5).
注:步數(shù)×平均步長=距離.
(1)根據(jù)題意完成表格填空;
(2)求x的值;
(3)王老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結(jié)束后又走了500米,使得總步數(shù)恰好為24000步,求王老師這500米的平均步長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月5日,中國郵政發(fā)行《馬克思誕辰200周年》紀(jì)念郵票1套2枚(如圖),這套郵票正面圖案為:馬克思像、馬克思與恩格斯像,背面完全相同.發(fā)行當(dāng)日,小宇購買了此款紀(jì)念郵票2套,他將2套郵票沿中間虛線撕開(使4枚形狀、大小完全相同)后將4枚紀(jì)念郵票背面朝上放在桌面上,并隨機從中抽出2張,則抽出的2張郵票恰好都是“馬克思像”的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù) | 未租出的車輛數(shù) | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護費 |
(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=4,△BCD為等邊三角形,點E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點,過點E作EM∥AB,交直線AC于點M,作EN∥AC,交直線AB于點N,則AN+AM的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com