【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D是BC上的點(diǎn).求證:BD2+CD2=2AD2 .
【答案】證明:作AE⊥BC于E,如上圖所示:
由題意得:ED=BD﹣BE=CE﹣CD,
∵在△ABC中,∠BAC=90°,AB=AC,
∴BE=CE= BC,
由勾股定理可得:
AB2+AC2=BC2 ,
AE2=AB2﹣BE2=AC2﹣CE2 ,
AD2=AE2+ED2 ,
∴2AD2=2AE2+2ED2=AB2﹣BE2+(BD﹣BE)2+AC2﹣CE2+(CE﹣CD)2
=AB2+AC2+BD2+CD2﹣2BD×BE﹣2CD×CE
=AB2+AC2+BD2+CD2﹣2× BC×BC
=BD2+CD2 ,
即:BD2+CD2=2AD2
【解析】作AE⊥BC于E,由于∠BAC=90°,AB=AC,所以BE=CE,要證明BD2+CD2=2AD2 , 只需找出BD、CD、AD三者之間的關(guān)系即可,由勾股定理可得出AD2=AE2+ED2 , AE2=AB2﹣BE2=AC2﹣CE2 , ED=BD﹣BE=CE﹣CD,代入求出三者之間的關(guān)系即可得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(k﹣1)x2﹣ x+ =0有實(shí)數(shù)根,則k的取值范圍是( )
A.k為任意實(shí)數(shù)
B.k≠1
C.k≥0
D.k≥0且k≠1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y1=ax2+bx+3的圖像與x軸相交于點(diǎn)A(﹣3,0)、B(1,0),交y軸于點(diǎn)C,C,D是二次函數(shù)圖像上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)y2=mx+n的圖像經(jīng)過(guò)B、D兩點(diǎn).
(1)求二次函數(shù)的解析式及點(diǎn)D的坐標(biāo);
(2)根據(jù)圖像寫(xiě)出y2>y1時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王購(gòu)買(mǎi)了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:
(1)用含、的代數(shù)式表示地面總面積;
(2)若=5,=,鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我縣某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共80件,這兩種商品的進(jìn)價(jià)、售價(jià)如表所示:
進(jìn)價(jià)(元/件) | 售價(jià)(元/件) | |
甲種商品 | 15 | 20 |
乙種商品 | 25 | 35 |
設(shè)其中甲種商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y元.
(1)寫(xiě)出y與x的函數(shù)關(guān)系式.
(2)該商場(chǎng)計(jì)劃最多投入1500元用于購(gòu)進(jìn)這兩種商品共80件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商場(chǎng)可獲得的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā)沿圖中某一個(gè)扇形順時(shí)針勻速運(yùn)動(dòng),設(shè)∠APB=y(單位:度),如果y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點(diǎn)P的運(yùn)動(dòng)路線可能為( )
A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F,若△FDE的周長(zhǎng)為7,△FCB的周長(zhǎng)為19,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形 ABCD 中, AB = a, BC = b, a > b .以 AB 邊為軸將長(zhǎng)方形旋轉(zhuǎn)一周形成 圓柱體甲,再以 BC 邊為軸將長(zhǎng)方形旋轉(zhuǎn)一周形成圓柱體乙.記兩個(gè)圓柱體的體積分別為 V甲 ,V乙 ,側(cè)面積分別為 S甲, S乙 ,則下列正確的是( )
A. V甲 > V乙 , S甲=S乙
B. V甲 < V乙 , S甲= S乙
C. V甲= V乙 , S甲= S乙
D. V甲 > V乙 , S甲 < S乙
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com