【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關系,則小敏、小聰行走的速度分別是(  )

A. 3km/h4km/h B. 3km/h3km/h

C. 4km/h4km/h D. 4km/h3km/h

【答案】D

【解析】設小敏的速度為:m,則函數(shù)式為,y=mx+b

由已知小敏經(jīng)過兩點(1.6,4.8)(2.8,0),

所以得:4.8=1.6m+b0=2.8m+b,

解得:m=4,b=11.2,

小敏離B地的距離y(km)與已用時間x(h)之間的關系為:y=4x+11.2

由實際問題得小敏的速度為4km/h.

設小聰?shù)乃俣葹椋?/span>n,則函數(shù)圖象過原點則函數(shù)式為,y=nx,

由已知經(jīng)過點(1.6,4.8),

所以得:4.8=1.6n,

n=3,

即小聰?shù)乃俣葹?/span>3km/h.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC,BD相交于點O,AC平分∠DCB,CDAD,∠ACD45°,∠BAC60°.

(1)證明:ADBC;

(2)求∠EAD的度數(shù);

(3)求證:∠AOB=∠DAC +∠CBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+6與x軸、y軸分別相交于點E、F,點A的坐標為(﹣6,0),P(x,y)是直線y=x+6上一個動點.

(1)在點P運動過程中,試寫出OPA的面積s與x的函數(shù)關系式;

(2)當P運動到什么位置,OPA的面積為,求出此時點P的坐標;

(3)過P作EF的垂線分別交x軸、y軸于C、D.是否存在這樣的點P,使△COD≌△FOE?若存在,直接寫出此時點P的坐標(不要求寫解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校開展了以“夢想中國”為主題的攝影大賽,要求參賽學生每人交一件作品.現(xiàn)將從中挑選的50件參賽作品的成績(單位:分)統(tǒng)計如下:

等級

成績(用m表示)

頻數(shù)

頻率

A

90≤m≤100

x

0.08

B

80≤m<90

34

y

C

m<80

12

0.24

合計

50

1

請根據(jù)上表提供的信息,解答下列問題:
(1)表中x的值為 , y的值為;(直接填寫結(jié)果)
(2)將本次參賽作品獲得A等級的學生依次用A1、A2、A3…表示.現(xiàn)該校決定從本次參賽作品獲得A等級的學生中,隨機抽取兩名學生談談他們的參賽體會,則恰好抽到學生A1和A2的概率為 . (直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.

(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請將下列證明過程補充完整:

已知:如圖,點PCD上,已知∠BAP+∠APD=180°,∠1=∠2

求證:∠E=∠F

證明:∵∠BAP+∠APD=180°已知

∴∠BAP=

∵∠1=∠2(已知)

∴∠BAP﹣ = ﹣∠2

即∠3= (等式的性質(zhì))

∴AE∥PF

∴∠E=∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,DCBCAE 平分∠BAD,DE 平分∠ADC,以下結(jié)論:①∠AED90°;②點 E BC 的中點;③DEBE;ADABCD;其中正確的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使B點落在AC邊上的B′處,則∠CDB′等于(
A.40°
B.60°
C.70°
D.80°

查看答案和解析>>

同步練習冊答案