【題目】為了了解初三學(xué)生的中考體育備考情況,西安鐵一中分校體育組從初三年級全年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行測試,現(xiàn)將從報排球項目所有女生中隨機抽取到的60名女生的排球成績(40秒內(nèi)有效墊球個數(shù))進(jìn)行整理,得到下列圖表中信息:
墊球個數(shù) | 頻數(shù) |
4 | |
26 | |
10 |
請根據(jù)所給信息,解答下列問題:
(1)__________,__________;
(2)這60名學(xué)生墊球個數(shù)的中位數(shù)落在__________段;
(3)全校報考排球項目女生共有450人,根據(jù)以往的經(jīng)驗墊球個數(shù)在30個以上(包含30個)在中考中能取得良好以上成績,請估計中考體育考試中女生排球項目達(dá)到良好以上的女生人數(shù).
【答案】(1)18;2;(2);(3)270人
【解析】
(1)由條形統(tǒng)計圖及表格可知n=2,再根據(jù)總?cè)藬?shù)為60人即可求得m=18;
(2)根據(jù)總數(shù)據(jù)為60個可知中位數(shù)為從小到大第30個和第31個的平均數(shù),再由前三組的人數(shù)和為14,前四組的人數(shù)為40可知這60名學(xué)生墊球個數(shù)的中位數(shù)落在第四組;
(3)先算出墊球個數(shù)在30個以上(包含30個)所占百分比,進(jìn)而可求得全校報考排球項目的女生達(dá)到良好以上的人數(shù).
解:(1)由題意可知:n=2,則m=60﹣2﹣4﹣26﹣10=18;
(2)∵總數(shù)據(jù)為60個,
∴中位數(shù)為從小到大第30個和第31個的平均數(shù),
∵前三組的人數(shù)和為24,前四組的人數(shù)為50,
∴中位數(shù)在第四組,即這60名學(xué)生墊球個數(shù)的中位數(shù)落在段;
(3)(人)
答:中考體育考試中女生排球項目達(dá)到良好以上的女生人數(shù)為270人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,CD⊥AB,垂足為D,則下面的結(jié)論中正確的是( 。
①BC與AC互相垂直;②AC與CD互相垂直;③點A到BC的垂線段是線段BC;④點C到AB的垂線段是線段CD;③線段BC是點B到AC的距離;⑥線段AC的長度是點A到BC的距離.
A.①④③⑥B.①④⑥C.②③D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次知識競賽中,甲、乙兩人進(jìn)入了“必答題”環(huán)節(jié).規(guī)則是:兩人輪流答題,每人都要回答20個題,每個題回答正確得a分,回答錯誤或放棄回答扣b分.當(dāng)甲、乙兩人恰好都答完12個題時,甲答對了8個題,得分為64分;乙答對了9個題,得分為78分.
(1)求a和b的值;
(2)規(guī)定此環(huán)節(jié)得分不低于120分能晉級,甲在剩下的比賽中至少還要答對多少個題才能順利晉級?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段的兩個端點均在小正方形的頂點上.
(1)如圖①,點在小正方形格點上,在圖①中作出點關(guān)于直線的對稱點,連接、、、,并直接寫出四邊形的周長;
(2)在圖②中畫出一個以線段為一條對角線、面積為15的菱形,且點和點均在小正方形的頂點上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, A(-1,0),B(3,0),C(0,2),CD∥x軸,CD=AB.
(1)求點D的坐標(biāo)
(2)四邊形OCDB的面積
(3)在y軸上是否存在一點P,使=,若存在這樣一點,求出點P的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過點A(-5,0),B(-1,4)
(1)求直線AB的表達(dá)式;
(2)求直線CE:y=-2x-4與直線AB及y軸圍成圖形的面積;
(3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b>-2x-4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AD與BC的位置關(guān)系如何?為什么?
(2)證明BC平分∠DBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,AB=AD,點E在邊BC上,∠C=∠AED,AB與DE交于點O.
(1)求證:△ABC≌△ADE;
(2)當(dāng)∠1=40°時,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com